The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints

Free first page
  • [1]  Kenneth J. Arrow, Leonid Hurwicz and , Hirofumi Uzawa, Studies in linear and non-linear programming, With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Sciences, vol. II, Stanford University Press, Stanford, Calif., 1958vii+229 MR0108399 0091.16002 Google Scholar

  • [2]  E. Bodewig, Matrix calculus, North-Holland Publishing Company, Amsterdam, 1956, 36–38 MR0080363 0086.32501 Google Scholar

  • [3]  R. Courant and , D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953, 34–36 MR0065391 0051.28802 Google Scholar

  • [4]  Haskell B. Curry, The method of steepest descent for non-linear minimization problems, Quart. Appl. Math., 2 (1944), 258–261 MR0010667 0061.26801 CrossrefGoogle Scholar

  • [5]  George B. Dantzig, Maximization of a linear function of variables subject to linear inequalitiesActivity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons Inc., New York, N. Y., 1951, 339–347 MR0056260 0045.09802 Google Scholar

  • [6]  George E. Forsythe, Computing constrained minima with Lagrange multipliers, J. Soc. Indust. Appl. Math., 3 (1955), 173–178 10.1137/0103015 MR0078032 0067.35902 LinkISIGoogle Scholar

  • [7]  Saul I. Gass, Linear programming: methods and applications, McGraw-Hill Book Co., Inc., New York, 1958xii+223, Ch.7 and 9. MR0096554 0081.36702 Google Scholar

  • [8]  G. H. Hardy, J. E. Littlewood and , G. Pólya, Inequalities, Cambridge, at the University Press, 1952, 16– MR0046395 0047.05302 Google Scholar

  • [9]  Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953, 29–30 MR0059056 0051.34602 Google Scholar

  • [10]  H. W. Kuhn and , A. W. Tucker, Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 481–492 MR0047303 0044.05903 Google Scholar

  • [11]  Mark Lotkin and , Russell Remage, Scaling and error analysis for matrix inversion by partitioning, Ann. Math. Statistics, 24 (1953), 428–439 MR0056373 0051.34701 CrossrefISIGoogle Scholar

  • [12]  R. P. Merrill, Gradient projection—description and use of 704 program, 1959, Presented at RAND Symposium on Mathematical Programming, March, To be published Google Scholar

  • [13]  W. Orchard-Hays, Evolution of computer codes for linear programming, RAND Corp., P-810, 1956, March; Linear programming system for IBM 704, SHARE distribution No. 161, Nov. 1956. Google Scholar

  • [14]  Vera Riley and , Saul I. Gass, Linear programming and associated techniques, Bibliographic Reference Series No. 5, Published for Operations Research Office, The Johns Hopkins University, by the The Johns Hopkins Press, Baltimore, Md., 1958x+613 MR0093014 0088.36601 Google Scholar

  • [15]  J. B. Rosen, Nonlinear programming. The gradient projection method, Bull. Amer. Math. Soc., 63 (1957), 25–26 Google Scholar

  • [16]  J. B. Rosen, The gradient projection method for nonlinear programming. II. Nonlinear constraints, J. Soc. Indust. Appl. Math., 9 (1961), 514–532 10.1137/0109044 MR0135991 LinkISIGoogle Scholar

  • [17]  J. B. Rosen, Fourier series approximation to nonlinear parabolic boundary value problems, Amer. Math. Soc. Notices, 5 (1958), 223– Google Scholar

  • [18]  P. Wolfe, 1958, private communication, March Google Scholar

  • [19]  Philip Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959), 382–398 MR0106783 0103.37603 CrossrefISIGoogle Scholar

  • [20]  G. Zoutendijk, Maximizing a function in a convex region, J. Roy. Statist. Soc. Ser. B, 21 (1959), 338–355 MR0122578 Google Scholar

  • [21]  G. Zoutendijk, 1959, private communication, March Google Scholar

  • [22]  T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev., 2 (1960), 15–22 10.1137/1002004 MR0110185 0168.13303 LinkISIGoogle Scholar

  • [23]  R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406–413 MR0069793 0065.24603 CrossrefGoogle Scholar

  • [24]  L. D. Pyle, Generalized inverse of linear programming, Presented at RAND Symposium., Statistical and Computing Lab. Rept., Purdue Univ., 1958, May Google Scholar