Abstract

We investigate the interaction of an excitable system with a slow oscillation. Under robust and general assumptions compatible with the more stringent assumptions usually made about excitable systems, we show that such a coupled system can display bursting, i.e. a stable solution in which some variable undergoes rapid oscillations followed by a period of quiescence, with both oscillation and quiescence continually repeated. Under a further weak condition, the bursting is “parabolic”, i.e. the local frequency of the fast oscillation increases and then decreases within a burst. The technique in this paper involves nonlinear changes of coordinates which transform the equations into ones which are closely related to Hill’s equation.

MSC codes

  1. 58F22
  2. 92A09

Keywords

  1. parabolic bursting
  2. excitable system
  3. oscillation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. J. Berridge, P. E. Rapp, A comparative survey of the function, mechanism and control of cellular oscillators, J. Exp. Biol., 81 (1979), 217–279
2.
P. E. Rapp, M. J. Berridge, Oscillations in calcium-cycle AMP control loops form the bases of pacemaker activity and other higher frequency biological rhythms, J. Theoret. Biol., 66 (1977), 497–525
3.
J. S. Turner, J. C. Roux, W. C. McCormick, H. L. Swinney, Alternating periodic and chaotic regimes in a chemical reaction, Phys. Letters, 85A (1981), 9–12
4.
J. L. Hudson, M. Hart, D. Marinko, An experimental study of multiple peak periodic and non-periodic oscillations in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 71 (1979), 1601–1606
5.
J. Rinzel, W. Troy, Bursting phenomena in a simplified Oregonator flow system model, J. Chem. Phys., 76 (1982), 1775–1789
6.
A. Arvanitaki, N. Chalazonitis, J. Salanki, Electrical properties and temporal organization in oscillatory neurons, Symposium on Neurobiology of Invertebrates, Plenum, New York, 1967, 169–199
7.
N. Kopell, G. B. Ermentrout, Subcellular oscillators and bursting, preprint
8.
Gail A. Carpenter, Bursting phenomena in excitable membranes, SIAM J. Appl. Math., 36 (1979), 334–372
9.
R. E. Plant, M. Kim, Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin–Huxley equations, Biophys. J., 16 (1976), 227–244
10.
T. R. Chay, J. M. Rinzel, Bursting, beating and chaos in an excitable membrane model, preprint
11.
Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53–98
12.
J. A. Connor, D. Walter, R. McKown, Neural repetitive firing: modifications of the Hodgkin–Huxley axon suggested by experimental results from crustacean axons, Biophys. J., 18 (1977), 81–102
13.
S. S. Goldstein, W. Rall, Changes of action potential shape and velocity and changing core geometries, Biophys. J., 14 (1974), 731–757
14.
R. Fitzhugh, H. P. Schwan, Mathematical models of excitation and propagation in nerveBiological Engineering, McGraw-Hill, New York, 1969, 1–85
15.
J. M. Rinzel, Models in neurobiologyMathematical aspects of physiology (Proc. Summer Sem., Univ. Utah, Salt Lake City, Utah, 1980), Lectures in Appl. Math., Vol. 19, Amer. Math. Soc., Providence, R.I., 1981, 281–297
16.
Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/1972), 193–226
17.
G. B. Ermentrout, J. M. Rinzel, Waves in a simple, excitable or oscillatory, reaction-diffusion model, J. Math. Biol., 11 (1981), 269–294
18.
W. Rall, G. M. Shepherd, Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb, J. Neurophys., 31 (1968), 884–
19.
S. P. Hastings, Persistent spatial patterns for semidiscrete models of excitable media, J. Math. Biol., 11 (1981), 105–117
20.
H. C. Tuckwell, R. M. Miura, A mathematical model for spreading cortical depression, Biophys. J., 23 (1978), 257–283
21.
H. R. Wilson, J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13 (1973), 55–80
22.
A. L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon, J. Physiol., 107 (1948), 164–181
23.
R. A. Chaplain, Metabolic regulation of the rhythmic activity in pacemaker neurons II, Brain Research, 106 (1976), 307–319
24.
Earl A. Coddington, Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955xii+429
25.
Wilhelm Magnus, Stanley Winkler, Hill's equation, Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons New York-London-Sydney, 1966viii+127
26.
G. Birkhoff, G. C. Rota, Ordinary differential equations, Second edition, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1969xiv+366
27.
D. G. Aronson, M. A. Chory, G. R. Hall, R. P. McGehee, Bifurcations from an invariant circle for two-parameter families of maps of the plane: a computer-assisted study, Comm. Math. Phys., 83 (1982), 303–354
28.
S. Ostlund, D. Rand, J. Sethna, E. Siggia, Universal properties of the transition from quasiperiodicity to chaos in dissipative systems, Phys. D, 8 (1983), 303–342
29.
M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1970
30.
S. Newhouse, J. Palis, F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., (1983), 5–71
31.
D. Junge, C. L. Stephens, Cyclic variation of potassium conductance in a burst generating neuron in aplysia, J. Physiol., 235 (1973), 155–181
32.
E. Marder, J. S. Eisen, Electrically coupled pacemaker neurons respond differently to some physiological inputs and neurotransmitters, J. Neurophys., 51 (1984), 1362–1374
33.
J. S. Eisen, E. Marder, A mechanism for production of phase shifts in a pattern generator, J. Neurophys., 51 (1984), 1375–1393
34.
R. E. Plant, The effects of calcium on bursting neurons, Biophys. J., 21 (1978), 217–237
35.
J. Maselko, H. L. Swinney, A complex transition sequence in the Belousov–Zhabotinckii reaction, 1984, to appear in Physica Scripta, Proc. Nobel Symposium on the Physics of Chaos and Related Problems, June
36.
J. Rinzel, I. B. Schwartz, One variable map prediction of Belousov–Zhabotinskii mixed mode oscillations, J. Chem. Phys., 80 (1984), 5610–5615

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 233 - 253
ISSN (online): 1095-712X

History

Submitted: 10 December 1984
Published online: 11 July 2006

MSC codes

  1. 58F22
  2. 92A09

Keywords

  1. parabolic bursting
  2. excitable system
  3. oscillation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media