Applications of a Planar Separator Theorem
Abstract
Any n-vertex planar graph has the property that it can be divided into components of roughly equal size by removing only $O(\sqrt n )$ vertices. This separator theorem, in combination with a divide-and-conquer strategy, leads to many new complexity results for planar graph problems. This paper describes some of these results.
[1] , The Design and Analysis of Efficient Computer Algorithms, Additon-Wesley, Reading, MA., 1974
[2] , On the independence ratio of a graph, J. Graph Theory, 2 (1978), 1–8 58:10545a 0379.05052
[3] , Nonserial dynamic programming, Academic Press, New York, 1972xii+235 54:4677 0244.49007
[4] , An observation on time-storage trade off, Fifth Annual ACM Symposium on Computing (Austin, Tex., 1973), Assoc. Comput. Mach., New York, 1973, 29–33 53:14976 0305.68066
[5] , Preserving average proximity in arrays, Comm. ACM, 21 (1978), 228–231 10.1145/359361.359447 57:8217 0378.68014
[6] , Multidimensional searching problems, SIAM J. Comput., 5 (1976), 181–186 10.1137/0205015 54:4175 0333.68031
[7] , On sparse graphs with dense long pathsComputers and mathematics with applications, Pergamon, Oxford, 1976, 365–369 57:16131
[8] , An efficient implementation of Edmonds' algorithm for maximum weight matching on graphs, Technical Report, CU-CS-075-75, University of Colorado, Boulder, Colorado, 1975
[9] , Triangulating a simple polygon, Inform. Process. Lett., 7 (1978), 175–179 10.1016/0020-0190(78)90062-5 58:271 0384.68040
[10] , Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), 345–363 10.1137/0710032 52:9590 0259.65087
[11] , The monotone and planar circuit value problems are log space complete for P, ACM SIGACT News 9, 2 (1977), 25–29 10.1145/1008354.1008356 0356.94042
[12] , On time versus space, J. Assoc. Comput. Mach., 24 (1977), 332–337 10.1145/322003.322015 56:1798 0358.68082
[13] , A $O(\mid V\mid \cdot \mid E\mid )$ algorithm for maximum matching of graphs, Computing (Arch. Elektron. Rechnen), 12 (1974), 91–98 53:4607 0278.65069
[14] , Masters Thesis, An O(n2.5) algorithm for findings maximum matchingon a general graph, Ph.D dissertation, Weizmann Institute of Science, Rehovot, Israel, 1976
[15] , 1979, private communication
[16] , The art of computer programming. Volume 3, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973xi+722 pp. (1 foldout), Sorting and Searching 56:4281
[17] , On parallelism in Turing machines, 17th Annual Symposium on Foundations of Computer Science (Houston, Tex., 1976), IEEE Comput. Soc., Long Beach, Calif., 1976, 89–97 57:4621
[18] , Space and time hierarchies for classes of control structures and data structures, J. Assoc. Comput. Mach., 23 (1976), 720–732 10.1145/321978.321990 55:13858 0333.68024
[19] , Generalized nested dissection, SIAM J. Numer. Anal., 16 (1979), 346–358 10.1137/0716027 80d:65041 0435.65021
[20] , A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), 177–189 10.1137/0136016 80k:68050 0432.05022
[21] , Applications of a planar separator theorem, Proc. 18th Annual Symp. on Foundations of Computer Science, 1977, 162–170
[22] , Introduction to finite element analysis, McGraw-Hill Book Co., New York, 1973xiii+386 53:14942 0323.73061
[23] , Comparative schematology, Record of Project MAC Conf. on Concurrent Systems and Parallel Computation, 1970, 119–128
[24] , Tape bounds for time-bounded Turing machines, J. Comput. System Sci., 6 (1972), 116–124 46:4797 0236.02031
[25] , Space bounds for a game on graphs, Math. Systems Theory, 10 (1976/77), 239–251 81h:68030a 0366.90150
[26] , Managing storage for extendible arrays, SIAM J. Comput., 4 (1975), 287–306 10.1137/0204024 51:12015 0327.68043
[27] , Nonserial dynamic programming is optimal, Conference Record of the Ninth Annual ACM Symposium on Theory of Computing (Boulder, Colo., 1977), Assoc. Comput. Mach., New York, 1977, 98–105 58:2558
[28] , Complete register allocation problems, SIAM J. Comput., 4 (1975), 226–248 10.1137/0204020 51:14629 0327.68042
[29] , Geometric complexity, Seventh Annual ACM Symposium on Theory of Computing (Albuquerque, N.M., 1975), Assoc. Comput. Mach., New York, 1975, 224–233 57:4628 0357.68046
[30] , Masters Thesis, Partial colorings and limiting chromatic numbers, Ph.D. dissertation, Syracuse University, Syracuse, NY, 1971
[31] , On non-linear lower bounds in computational complexity, Seventh Annual ACM Symposium on Theory of Computing (Albuquerque, N. M., 1975), Assoc. Comput. Mach., New York, 1975, 45–53 55:6956 0363.68066
[32] , A theorem on planar graphs, J. London Math. Soc., 26 (1951), 256–262 13,371c 0043.38601
[33] , Graph-theoretic arguments in low-level complexity, 1977, Computer Science Dept., University of Edinburgh


