Free access

Analysis of Rotation--Vibration Relative Equilibria on the Example of a Tetrahedral Four Atom Molecule

Abstract

We study relative equilibria (RE) of a nonrigid molecule, which vibrates about a well-defined equilibrium configuration and rotates as a whole. Our analysis unifies the theory of rotational and vibrational RE. We rely on the detailed study of the symmetry group action on the initial and reduced phase space of our system and consider the consequences of this action for the dynamics of the system. We develop our approach on the concrete example of a four-atomic molecule A4 with tetrahedral equilibrium configuration, a dynamical system with six vibrational degrees of freedom. Further applications and illustrations of our results can be found in [van Hecke et al., Eur. Phys. J. D At. Mol. Opt. Phys., 17 (2001), pp. 13--35].

MSC codes

  1. 37J15
  2. 37J35
  3. 37J40
  4. 81V55
  5. 58D19

Keywords

  1. small vibrations
  2. finite group action
  3. reversing symmetry
  4. Molien generating function
  5. integrity basis
  6. vibration-rotation of molecules
  7. spherical top
  8. relative equilibria
  9. 111 resonant oscillator
  10. normalization
  11. reduction
  12. bifurcations
  13. orbit space

Formats available

You can view the full content in the following formats:

References

1.
E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw–Hill, New York, 1955.
2.
G. Amat, H. H. Nielsen, and G. Tarrago, Rotation‐Vibrations of Polyatomic Molecules, Marcel Dekker, New York, 1971.
3.
J. K. G. Watson, Higher‐degree centrifugal distortion of tetrahedral molecules, J. Mol. Spectrosc., 55 (1975), pp. 498–499.
4.
M. R. Aliev and J. K. G. Watson, Higher‐order effects in the vibration‐rotation spectra of semirigid molecules, in Molecular Spectroscopy: Modern Research, Vol. 3, K. N. Rao, ed., Academic Press, New York, 1985, pp. 1–67.
5.
V. Arnol’d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Vol. 60, Springer‐Verlag, 1989xvi+508, Translated from the Russian by K. Vogtmann and A. Weinstein
6.
V. Arnol’d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 250, Springer‐Verlag, 1988xiv+351, Translated from the Russian by Joseph Szücs [József M. Szücs]
7.
V. Arnold, V. Kozlov, A. Neishtadt, Mathematical aspects of classical and celestial mechanics, Springer‐Verlag, 1997xiv+291, Translated from the 1985 Russian original by A. Iacob; Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems. III
8.
J.‐M. Souriau, Structure des systèmes dynamiques, Maîtrises de mathématiques, Dunod, 1970xxxii+414
9.
Jerrold Marsden, Tudor Ratiu, Introduction to mechanics and symmetry, Texts in Applied Mathematics, Vol. 17, Springer‐Verlag, 1994xvi+500, A basic exposition of classical mechanical systems
10.
Ralph Abraham, Jerrold Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, 1978xxii+m‐xvi+806, Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman
11.
R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997.
12.
Ch. van Hecke, D. A. Sadovskií, and B. I. Zhilinskií, Qualitative analysis of molecular rotation starting from inter‐nuclear potential, European Phys. J. D At. Mol. Opt. Phys., 7 (1999), pp. 199–209.
13.
Ch. van Hecke, D. A. Sadovskií, B. I. Zhilinskií, and V. Boudon, Rotational‐vibrational relative equilibria and the structure of quantum energy spectrum of the tetrahedral molecule P4, Eur. Phys. J. D At. Mol. Opt. Phys., 17 (2001), pp. 13–35.
14.
J. Montaldi, R. Roberts, I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Philos. Trans. Roy. Soc. London Ser. A, 325 (1988), 237–293
15.
James Montaldi, Mark Roberts, Ian Stewart, Existence of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695–730
16.
James Montaldi, Mark Roberts, Ian Stewart, Stability of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731–772
17.
B. I. Zhilinskií, Qualitative analysis of vibrational polyads: N mode case, Chem. Phys., 137 (1989), pp. 1–13.
18.
D. A. Sadovskií and B. I. Zhilinskií, Group theoretical and topological analysis of localized vibration‐rotation states, Phys. Rev. A, 47 (1993), pp. 2653–2671.
19.
N. Fulton, J. Tennyson, D. A. Sadovskií, and B. I. Zhilinskií, Nonlinear normal modes and local bending vibrations of H3+ and D3+, J. Chem. Phys., 99 (1993), pp. 906–918.
20.
Richard Cushman, David Rod, Reduction of the semisimple 1:1 resonance, Phys. D, 6 (1982/83), 105–112
21.
R. Cushman, Geometry of the bifurcations of the normalized reduced Hénon‐Heiles family, Proc. Roy. Soc. London Ser. A, 382 (1982), 361–371
22.
Lin Xiao, Michael Kellman, Unified semiclassical dynamics for molecular resonance spectra, J. Chem. Phys., 90 (1989), 6086–6098
23.
Z.‐M. Lu and M. E. Kellman, Phase space structure of triatomic molecules, J. Chem. Phys., 107 (1997), pp. 1–15.
24.
Laurence Fried, Gregory Ezra, Semiclassical quantization using classical perturbation theory: algebraic quantization of multidimensional systems, J. Chem. Phys., 86 (1987), 6270–6282
25.
Ch. Jaffé, Comment on “Semiclassical phase space evolution of Fermi resonance spectra,” J. Chem. Phys., 89 (1988), pp. 3395–3396.
26.
M. E. Kellman, Approximate constants of motion for vibrational spectra of many‐oscillator systems with multiple anharmonic resonances, J. Chem. Phys., 93 (1990), pp. 6630–6635.
27.
M. E. Kellman and G. Chen, Approximate constants of motion and energy transfer pathways in highly excited acetylene, J. Chem. Phys., 95 (1991), pp. 8671–8672.
28.
James Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449–466
29.
J. Montaldi, R. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53–88
30.
I. N. Kozin, D. A. Sadovskií, and B. I. Zhilinskií, Assigning Vibrational Polyads Using Relative Equilibria. Application to Ozone, in preparation.
31.
A. Dorney and J. K. G. Watson, Forbidden rotational spectra of polyatomic molecules. Stark effect and ΔJ=0 transitions of Td molecules, J. Mol. Spectrosc., 42 (1972), pp. 135–148.
32.
W. G. Harter and C. W. Patterson, Orbital level splitting in octahedral symmetry and SF6 rotational spectra, J. Chem. Phys., 66 (1977), pp. 4872–4885.
33.
C. W. Patterson and W. G. Harter, Orbital level splitting in octahedral symmetry and SF6 rotational spectra II. Quantitative features of high J levels, J. Chem., Phys., 66 (1977), pp. 4886–4892.
34.
W. G. Harter and C. W. Patterson, Rotational energy surfaces and high‐J eigenvalue structure of polyatomic molecules, J. Chem. Phys., 80 (1984), pp. 4241–4261.
35.
W. G. Harter, Computer graphical and semiclassical approaches to molecular rotations and vibrations, Comp. Phys. Rep., 8 (1988), pp. 319–394.
36.
W. G. Harter, Molecular symmetry and dynamics, in Atomic, Molecular, and Optical Physics Handbook, G. W. F. Drake, ed., AIP Press, New York, 1996, pp. 378–393.
37.
B. Zhilinskii˘, I. Pavlichenkov, Critical phenomena in rotational spectra, Zh. Èksper. Teoret. Fiz., 92 (1987), 387–403
38.
I. Pavlichenkov, B. Zhilinskii˘, Critical phenomena in rotational spectra, Ann. Physics, 184 (1988), 1–32
39.
B. I. Zhilinskií, Topological and symmetry features of intramolecular dynamics through high‐resolution molecular spectroscopy, Spectrochim. Acta A, 52 (1996), pp. 881–900.
40.
B. I. Zhilinskií, Teorîya slôzhnŷkh molekulˆyarnŷkh spektrov, Moscow University Press, Moscow, 1989.
41.
D. A. Sadovskií and B. I. Zhilinskií, Qualitative analysis of vibration‐rotation Hamiltonians for spherical top molecules, Molec. Phys., 65 (1988), pp. 109–128.
42.
Vl. M. Krivtsun, D. A. Sadovskií, and B. I. Zhilinskií, Critical phenomena and diabolic points in rovibrational energy spectra of spherical top molecules, J. Molecular Spectr., 139 (1990), pp. 126–46.
43.
D. A. Sadovskií, B. I. Zhilinskií, J.‐P. Champion, and G. Pierre, Manifestations of bifurcations and diabolic points in molecular energy spectra, J. Chem. Phys., 92 (1990), pp. 1523–1537.
44.
Pascal Chossat, Reiner Lauterbach, Methods in equivariant bifurcations and dynamical systems, Advanced Series in Nonlinear Dynamics, Vol. 15, World Scientific Publishing Co. Inc., 2000xvi+404
45.
Martin Golubitsky, David Schaeffer, Singularities and groups in bifurcation theory. Vol. I, Applied Mathematical Sciences, Vol. 51, Springer‐Verlag, 1985xvii+463
46.
Martin Golubitsky, Ian Stewart, David Schaeffer, Singularities and groups in bifurcation theory. Vol. II, Applied Mathematical Sciences, Vol. 69, Springer‐Verlag, 1988xvi+533
47.
V. Boudon, E. B. Mkadmi, H. Bürger, and G. Pierre, High‐resolution FTIR spectroscopy and analysis of the ν3 fundamental band of P4, Chem. Phys. Lett., 305 (1999), pp. 21–27.
48.
L. Michel, B. Zhilinskií, Symmetry, invariants, topology. Basic tools, Phys. Rep., 341 (2001), 11–84, Symmetry, invariants, topology
49.
L. Michel, B. Zhilinskií, Rydberg states of atoms and molecules. Basic group theoretical and topological analysis, Phys. Rep., 341 (2001), 173–264, Symmetry, invariants, topology
50.
B. Zhilinskií, Symmetry, invariants, and topology in molecular models, Phys. Rep., 341 (2001), 85–171, Symmetry, invariants, topology
51.
Robert Littlejohn, Matthias Reinsch, Gauge fields in the separation of rotations and internal motions in the n‐body problem, Rev. Modern Phys., 69 (1997), 213–275
52.
A. Tachibana and T. Iwai, Complete molecular Hamiltonian based on the Born–Oppenheimer adiabatic approximation, Phys. Rev. A, 33 (1986), pp. 2262–2269.
53.
A. Guichardet, On rotation and vibration motions of molecules, Ann. Inst. H. Poincaré Phys. Théor., 40 (1984), 329–342
54.
D. A. Sadovskií and B. I. Zhilinskií, Counting levels within vibrational polyads. Generating function approach, J. Chem. Phys., 103 (1995), pp. 10520–10536.
55.
I. N. Kozin and I. M. Pavlîchenkov, J. Chem. Phys., 104 (1996), pp. 4105–4113.
56.
G. Pierre, D. A. Sadovskií, and B. I. Zhilinskií, Organization of quantum bifurcations: Crossover of rovibrational bands in spherical top molecules, Europhys. Lett., 10 (1989), pp. 409–414.
57.
O. I. Davarashvili, B. I. Zhilinskií, V. M. Krivˆtsun, D. A. Sadovskií, and E. P. Snegirev, Experimental study of the sequence of bifurcations which causes the crossover of the rotational multiplet, Soviet JETP Lett., 51 (1990), pp. 17–19.
58.
G. Dhont, D. A. Sadovskií, B. I. Zhilinskií, and V. Boudon, Analysis of the “unusual” vibrational components of triply degenerate vibrational mode ν6 of Mo(CO)6 based on the classical interpretation of the effective rotation‐vibration Hamiltonian, J. Molec. Spectr., 201 (2000), pp. 95–108.
59.
V. E. Pavlov‐Verevkin, D. A. Sadovskií, and B. I. Zhilinskií, On the dynamical meaning of diabolic points, Europhys. Lett., 6 (1988), pp. 573–578.
60.
D. Sadovskií, B. Zĥilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235–244
61.
R. Cushman, J. Duistermaat, The quantum mechanical spherical pendulum, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 475–479
62.
San Vū Ngoục, Quantum monodromy in integrable systems, Comm. Math. Phys., 203 (1999), 465–479
63.
R. Cushman, D. Sadovskií, Monodromy in perturbed Kepler systems: hydrogen atom in crossed fields, Europhys. Lett., 47 (1999), 1–7
64.
R. Cushman, D. Sadovskií, Monodromy in the hydrogen atom in crossed fields, Phys. D, 142 (2000), 166–196
65.
M. S. Child, T. Weston, and J. Tennyson, Quantum monodromy in the spectrum of H2O and other systems, Molecular Phys., 96 (1999), p. 371.
66.
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford, UK, 1965.
67.
Morton Hamermesh, Group theory and its application to physical problems, Addison‐Wesley Series in Physics, Addison‐Wesley Publishing Co., Inc., Reading, Mass.‐London, 1962xv+509
68.
L. Biedenharn, J. Louck, Angular momentum in quantum physics, Encyclopedia of Mathematics and its Applications, Vol. 8, Addison‐Wesley Publishing Co., Reading, Mass., 1981xxxii+716, Theory and application; With a foreword by Peter A. Carruthers
69.
J. Schwinger, On angular momentum, in Quantum Theory of Angular Momentum, L. C. Biedenharn and H. van Dam, eds., Academic Press, New York, 1975, pp. 229–279.
70.
D. A. Sadovskií and B. I. Zhilinskií, Qualitative study of a model three level Hamiltonian with SU(3) dynamical symmetry, Phys. Rev. A, 48 (1993), pp. 1035–1044.
71.
Wolfgang Gröbner, Die Lie‐Reihen und ihre Anwendungen, Zweite, überarbeitete und erweiterte Auflage. Mathematische Monographien, Band 3, VEB Deutscher Verlag der Wissenschaften, 1967viii+176
72.
, Contributions to the method of Lie series, Edited by W. Gröbner and H. Knapp. B. I. Hochschulskripten, 802/802a, Bibliographisches Institut, 1967vi+265
73.
André Deprit, Canonical transformations depending on a small parameter, Celestial Mech., 1 (1969/1970), 12–30
74.
Jacques Henrard, On a perturbation theory using Lie transforms, Celestial Mech., 3 (1970/1971), 107–120
75.
Louis Michel, Points critiques des fonctions invariantes sur une G‐variété, C. R. Acad. Sci. Paris Sér. A‐B, 272 (1971), 0–0A433–A436
76.
Louis Michel, Symmetry defects and broken symmetry. Configurations. Hidden symmetry, Rev. Modern Phys., 52 (1980), 617–651
77.
Richard Churchill, Martin Kummer, David Rod, On averaging, reduction, and symmetry in Hamiltonian systems, J. Differential Equations, 49 (1983), 359–414
78.
Dmitrií Sadovskií, Normal forms, geometry, and dynamics of atomic and molecular systems with symmetry, World Sci. Publishing, River Edge, NJ, 2001, 191–205
79.
William Harter, Chris Patterson, Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators, J. Math. Phys., 20 (1979), 1453–1459
80.
B. I. Zhilinskií and S. Brodersen, Symmetry of the vibrational components in the Td molecules, J. Mol. Spectrosc., 163 (1994), pp. 326–338.
81.
G. Herzberg, Spectra and Structure of Polyatomic Molecules, R. E. Kreiger, Malabar, FL, 1989.
82.
F. Faure and B. I. Zhilinskií, Topological Chern indices in molecular spectra, Phys. Rev. Lett., 85 (2000), pp. 960–963.
83.
Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, 1939xii+302
84.
V. E. Pavlov‐Verevkin and B. I. Zhilinskií, Effective Hamiltonians for vibrational polyads: Integrity basis approach, Chem. Phys., 126 (1988), pp. 243–253.
85.
J. Moret‐Bailly, Introduction au calcul de l’energie de vibration‐rotation des molécules à symétrie sphèrique, Cahiers de Phys., 13 (1959), pp. 476–494.
86.
Jacques Moret‐Bailly, Sur l’interprétation des spectres de vibration‐rotation des molécules à symétrie tétraédrique ou octaédrique, Cahiers de Phys., 15 (1961), 237–314
87.
J. Moret‐Bailly, L. Gautier, and J. Montagutelli, Clebsch‐Gordan coefficients adapted to cubic symmetry, J. Mol. Spectrosc., 15 (1965), pp. 355–377.
88.
F. Michelot, J. Moret‐Bailly, and K. Fox, Rotational energy for spherical tops I. Vibronic ground state, J. Chem. Phys., 60 (1974), pp. 2606–2609.
89.
J. Champion, G. Pierre, F. Michelot, J. Moret‐Bailly, Composantes cubiques normales des tenseurs sphériques, Canad. J. Phys., 55 (1977), 512–520
90.
J.‐P. Champion, Development complet de l’hamiltonien de vibration‐rotation adapté à l’étude des interactions dans les molécules toupies sphèriques, Canad. J. Phys., 55 (1977), pp. 1802–1828.
91.
J.‐P. Champion, M. Loëte, and G. Pierre, Spherical top spectra, in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, K. Narahari Rao and A. Weber, eds., Academic Press, Boston, 1992, pp. 339–422.
92.
J.‐P. Champion and G. Pierre, Vibration–rotation energies of harmonic and combination levels in tetrahedral XY4 molecules, J. Mol. Spectrosc., 79 (1980), p. 255–280.
93.
B. Zhilinskii˘, V. Perevalov, Vl. Tyuterev, Metod neprivodimykh tenzornykh operatorov v teorii spektrov molekul, “Nauka” Sibirsk. Otdel., 1987, 233–0
94.
J. Patera, R. Sharp, P. Winternitz, Polynomial irreducible tensors for point groups, J. Math. Phys., 19 (1978), 2362–2376
95.
K. T. Hecht, Vibration‐rotation energies of tetrahedral XY4 molecules I. Theory of spherical top molecules, J. Mol. Spectrosc., 5 (1960), pp. 355–389.
96.
Ch. W. Patterson, Quantum and semiclassical description of a triply degenerate anharmonic oscillator, J. Chem. Phys., 83 (1985), pp. 4618–4632.
97.
K. Efstathiou, D. Sadovskií, R. Cushman, Linear Hamiltonian Hopf bifurcation for point‐group‐invariant perturbations of the 1:1:1 resonance, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 2997–3019
98.
K. Efstathiou, D. Sadovskií, Perturbations of the 1:1:1 resonance with tetrahedral symmetry: a three degree of freedom analogue of the two degree of freedom Hénon‐Heiles Hamiltonian, Nonlinearity, 17 (2004), 415–446
99.
C. Jaffé and W. P. Reinhardt, Time‐independent methods in classical mechanics: Calculation of invariant tori and semiclassical energy levels via classical Van Vleck transformations, J. Chem. Phys., 71 (1979), pp. 1862–1869.
100.
C. Jaffé and W. P. Reinhardt, Uniform semiclassical quantization of regular and chaotic classical dynamics on the Henon–Heiles surface, J. Chem. Phys., 77 (1982), pp. 5191–5203.
101.
A. B. McCoy and E. L. Sibert, Calculation of infrared intensities of highly excited vibrational states of HCN using Van Vleck perturbation theory, J. Chem. Phys., 95 (1991), pp. 3488–3493.
102.
A. B. McCoy and E. L. Sibert, Perturbative calculations of vibrational (J=0) energy levels of linear molecules in normal coordinate representations, J. Chem. Phys., 95 (1991), pp. 3476–3487.
103.
A. B. McCoy and E. L. Sibert, An algebraic approach to calculating rotation‐vibration spectra of polyatomic molecules, Molecular Phys., 77 (1992), pp. 697–708.
104.
A. B. McCoy and E. L. Sibert, Determining potential energy surfaces from spectra: An iterative approach, J. Chem. Phys., 97 (1992), pp. 2938–2947.
105.
E. L. Sibert and A. B. McCoy, Quantum, semiclassical and classical dynamics of the bending modes of acetylene, J. Chem. Phys., 105 (1996), pp. 469–478.
106.
M. Joyeux, Gustavson’s procedure and the dynamics of highly excited vibrational states, J. Chem. Phys., 109 (1998), pp. 2111–2122.
107.
D. Sugny and M. Joyeux, On the application of canonical perturbation theory to floppy molecules, J. Chem. Phys., 112 (2000), pp. 31–39.
108.
D. Sugny, M. Joyeux, and E. L. Sibert, Investigation of the vibrational dynamics of the HCN/CNH isomers through high order perturbation theory, J. Chem. Phys., 113 (2000), pp. 7165–7177.
109.
D. Sugny and M. Joyeux, New canonical perturbation procedure for studying nonadiabatic dynamics, Chem. Phys. Lett., 337 (2001), pp. 319–326.
110.
Richard Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 475–511
111.
Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer‐Verlag, 1993vi+197

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 261 - 351
ISSN (online): 1536-0040

History

Published online: 7 August 2006

MSC codes

  1. 37J15
  2. 37J35
  3. 37J40
  4. 81V55
  5. 58D19

Keywords

  1. small vibrations
  2. finite group action
  3. reversing symmetry
  4. Molien generating function
  5. integrity basis
  6. vibration-rotation of molecules
  7. spherical top
  8. relative equilibria
  9. 111 resonant oscillator
  10. normalization
  11. reduction
  12. bifurcations
  13. orbit space

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Get Access

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.