This paper establishes global convergence of a stochastic adaptive control algorithm for discrete time linear systems. It is shown that, with probability one, the algorithm will ensure the system inputs and outputs are sample mean square bounded and the conditional mean square output tracking error achieves its global minimum possible value for linear feedback control. Thus, asymptotically, the adaptive control algorithm achieves the same performance as could be achieved if the system parameters were known.

  • [1]  Arie Feuer and , Stephen Morse, Adaptive control of single-input, single-output linear systems, IEEE Trans. Automat. Control, 23 (1978), 557–569 10.1109/TAC.1978.1101822 58:26433 0384.93028 CrossrefISIGoogle Scholar

  • [2]  A. S. Morse, Global Stability of Parameter Adaptive Control Systems, S & IS Report, 7902 R, Yale University, 1979, March Google Scholar

  • [3]  Graham C. Goodwin, Peter J. Ramadge and , Peter E. Caines, Discrete-time multivariable adaptive control, IEEE Trans. Automat. Control, 25 (1980), 449–456 10.1109/TAC.1980.1102363 81c:93048 0429.93034 CrossrefISIGoogle Scholar

  • [4]  Lennart Ljung, Analysis of recursive stochastic algorithms, IEEE Trans. Automatic Control, AC-22 (1977), 551–575 10.1109/TAC.1977.1101561 57:5358 0362.93031 CrossrefISIGoogle Scholar

  • [5]  Lennart Ljung, On positive real transfer functions and the convergence of some recursive schemes, IEEE Trans. Automatic Control, AC-22 (1977), 539–551 10.1109/TAC.1977.1101552 56:15049 0361.93063 CrossrefISIGoogle Scholar

  • [6]  V. Solo, Masters Thesis, Time series recursions and stochastic approximation, Ph.D. dissertation, The Australian National University, 1978, Sept. Google Scholar

  • [7]  L. Ljung and , B. Wittenmark, On a stabilizing property of adaptive regulators, 1976, Reprint IFAC Symposium on Identification (Tbilisi, USSR) Google Scholar

  • [8]  K. J. Åström and , B. Wittenmark, On self-tuning regulators, Automatica, 9 (1973), 195–199 0249.93049 CrossrefISIGoogle Scholar

  • [9]  K. L. Chung, A Course in Probability Theory, Harcourt Brace and World, New York, 1978 Google Scholar

  • [10]  D. Burton, Introduction to Modern Abstract Algebra, Addison-Wesley, Reading, MA, 1967 0189.29401 Google Scholar

  • [11]  J. Neveu, Discrete-parameter martingales, North-Holland Publishing Co., Amsterdam, 1975viii+236 53:6729 0345.60026 Google Scholar

  • [12]  J. L. Willems, Stability Theory of Dynamical Systems, John Wiley, New York, 1970 0222.93010 Google Scholar

  • [13]  K. L. Hitz and , B. D. O. Anderson, Discrete positive-real functions and their application to system stability, Proc. Inst. Elec. Engrs., 116 (1969), 153–155 46:8721 CrossrefISIGoogle Scholar

  • [14]  G. C. Goodwin and , K. S. Sin, Stochastic adaptive control: The general delay-colored noise case, Technical Report, 7904, Dept. of Electrical Engineering, University of Newcastle, Australia, 1979, March Google Scholar