A Priori Error Estimates for the Finite Element Discretization of Elliptic Parameter Identification Problems with Pointwise Measurements

Abstract

We develop an a priori error analysis for the finite element Galerkin discretization of parameter identification problems. The state equation is given by an elliptic partial differential equation of second order with a finite number of unknown parameters, which are estimated using pointwise measurements of the state variable.

MSC codes

  1. 65K10
  2. 65N30
  3. 65N21
  4. 49M25
  5. 49K20

Keywords

  1. parameter identification
  2. finite elements
  3. pointwise measurements
  4. $L^\infty$-error estimates

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Nadir Arada, Eduardo Casas, Fredi Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229
2.
H. Banks, K. Kunisch, Estimation techniques for distributed parameter systems, Systems & Control: Foundations & Applications, Vol. 1, Birkhäuser Boston Inc., 1989xiv+315
3.
R. Becker, M. Braack, B. Vexler, Numerical parameter estimation for chemical models in multidimensional reactive flows, Combust. Theory Model., 8 (2004), 661–682
4.
Roland Becker, Boris Vexler, A posteriori error estimation for finite element discretization of parameter identification problems, Numer. Math., 96 (2004), 435–459
5.
Susanne Brenner, L. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, Vol. 15, Springer‐Verlag, 2002xvi+361
6.
K. Deckelnick and M. Hinze, Error estimates in space and time for tracking‐type control of the instationary Stokes system, in Proceedings of the 8th Conference on Control of Distributed Parameter Systems, Graz, Austria, 2001, Internat. Ser. Numer. Math., 143, Birkhäuser, Basel, Switzerland, 2002, pp. 87–104.
7.
Manfred Dobrowolski, Rolf Rannacher, Finite element methods for nonlinear elliptic systems of second order, Math. Nachr., 94 (1980), 155–172
8.
R. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 28–47.
9.
Richard Falk, Error estimates for the numerical identification of a variable coefficient, Math. Comp., 40 (1983), 537–546
10.
J. Frehse and R. Rannacher, Eine L1‐Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, in Tagungsband Finite Elemente, Bonner Math. Schrifter 89, University of Bonn, Bonn, Germany, 1976, pp. 92–114.
11.
David Gilbarg, Neil Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer‐Verlag, 2001xiv+517, Reprint of the 1998 edition
12.
P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris, and Springer, Berlin, 1992.
13.
Max Gunzburger, L. Hou, Finite‐dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), 1001–1043
14.
C. Johnson, Numerical Solution of Partial Differential Equations by Finite Element Method, Cambridge University Press, Cambridge, UK, 1987.
15.
Tommi Kärkkäinen, Error estimates for distributed parameter identification in linear elliptic equations, J. Math. Systems Estim. Control, 6 (1996), 0–020 pp. (electronic)
16.
Costas Kravaris, John Seinfeld, Identification of parameters in distributed parameter systems by regularization, SIAM J. Control Optim., 23 (1985), 217–241
17.
William Litvinov, Optimization in elliptic problems with applications to mechanics of deformable bodies and fluid mechanics, Operator Theory: Advances and Applications, Vol. 119, Birkhäuser Verlag, 2000xxii+522, Translated from the Russian manuscript by the author, A. Butyrin and E. Lytvynov
18.
P. Neittaanmäki and X.‐C. Tai, Error estimates for numerical identification of distributed parameters, J. Comput. Math., 10 (1992), pp. 66–78.
19.
Joachim Nitsche, Über L‐Abschätzungen von Projektionen auf finite Elemente, Inst. Angew. Math. Univ. Bonn, Bonn, 1976, 0–0, 13–30. Bonn. Math. Schrift., No. 89
20.
Joachim Nitsche, Alfred Schatz, Interior estimates for Ritz‐Galerkin methods, Math. Comp., 28 (1974), 937–958
21.
Jorge Nocedal, Stephen Wright, Numerical optimization, Springer Series in Operations Research, Springer‐Verlag, 1999xxii+636
22.
Rolf Rannacher, L‐stability estimates and asymptotic error expansion for parabolic finite element equations, Bonner Math. Schriften, Vol. 228, Univ. Bonn, Bonn, 1991, 74–94
23.
R. Rannacher, On L‐Stability in the Finite Element Method on Meshes without Uniform Size and Shape Property, Preprint SFB 359, Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany, 2005.
24.
Rolf Rannacher, Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 38 (1982), 437–445
25.
A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part I, Math. Comp., 32 (1978), pp. 73–109.
26.
B. Vexler, Adaptive Finite Element Methods for Parameter Identification Problems, Ph.D. thesis, Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany, 2004.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 1844 - 1863
ISSN (online): 1095-7138

History

Published online: 26 July 2006

MSC codes

  1. 65K10
  2. 65N30
  3. 65N21
  4. 49M25
  5. 49K20

Keywords

  1. parameter identification
  2. finite elements
  3. pointwise measurements
  4. $L^\infty$-error estimates

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.