Two Numerical Methods for Recovering Small Inclusions from the Scattering Amplitude at a Fixed Frequency

In this paper two noniterative algorithms for locating small electromagnetic inclusions from the scattering amplitude at a fixed frequency are developed. In particular, a variety of numerical results is presented to highlight their potential and their limitations.

  • [1]  Google Scholar

  • [2]  Habib Ammari, Ekaterina Iakovleva and , Dominique Lesselier, A MUSIC algorithm for locating small inclusions buried in a half‐space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597–628 MR2136165 LinkISIGoogle Scholar

  • [3]  Habib Ammari, Ekaterina Iakovleva and , Shari Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal., 34 (2003), 882–900 10.1137/S0036141001392785 2004a:78022 LinkISIGoogle Scholar

  • [4]  Habib Ammari, Shari Moskow and , Michael Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume, ESAIM Control Optim. Calc. Var., 9 (2003), 49–66 2004j:78025 CrossrefISIGoogle Scholar

  • [5]  M. Baouendi, Peter Ebenfelt and , Linda Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, Vol. 47, Princeton University Press, 1999xii+404 2000b:32066 CrossrefGoogle Scholar

  • [6]  Martin Brühl, Martin Hanke and , Michael Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math., 93 (2003), 635–654 2004b:65169 CrossrefISIGoogle Scholar

  • [7]  D. Cedio‐Fengya, S. Moskow and , M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, 14 (1998), 553–595 10.1088/0266-5611/14/3/011 99d:78011 CrossrefISIGoogle Scholar

  • [8]  Margaret Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17 (2001), 591–595, Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000) 10.1088/0266-5611/17/4/301 MR1861470 CrossrefISIGoogle Scholar

  • [9]  Margaret Cheney and , David Isaacson, Inverse problems for a perturbed dissipative half‐space, Inverse Problems, 11 (1995), 865–888 10.1088/0266-5611/11/4/015 96d:35144 CrossrefISIGoogle Scholar

  • [10]  David Colton, Joe Coyle and , Peter Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev., 42 (2000), 369–414 10.1137/S0036144500367337 2001f:76066 LinkISIGoogle Scholar

  • [11]  Google Scholar

  • [12]  M. Fink and  and C. Prada, Acoustical time‐reversal mirrors, Inverse Problems, 17 (2001), pp. R1–R38. inp INPEEY 0266-5611 Inverse Probl. CrossrefISIGoogle Scholar

  • [13]  Joel Franklin, Analytic continuation by the fast Fourier transform, SIAM J. Sci. Statist. Comput., 11 (1990), 112–122 90m:30004 LinkISIGoogle Scholar

  • [14]  Christophe Hazard and , Karim Ramdani, Selective acoustic focusing using time‐harmonic reversal mirrors, SIAM J. Appl. Math., 64 (2004), 1057–1076 10.1137/S0036139903428732 2005e:35175 LinkISIGoogle Scholar

  • [15]  Google Scholar

  • [16]  Andreas Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025–1040 10.1088/0266-5611/18/4/306 2003f:35286 CrossrefISIGoogle Scholar

  • [17]  S. K. Lehman and  and A. J. Devaney, Transmission mode time‐reversal super‐resolution imaging, J. Acoust. Soc. Amer., 113 (2003), pp. 2742–2753. jas JASMAN 0001-4966 J. Acoust. Soc. Am. CrossrefISIGoogle Scholar

  • [18]  T. D. Mast, A. I. Nachman and , and R. C. Waag, Focusing and imaging using eigenfunctions of the scattering operator, J. Acoust. Soc. Amer., 102 (1997), pp. 715–725. jas JASMAN 0001-4966 J. Acoust. Soc. Am. CrossrefISIGoogle Scholar

  • [19]  G. Micolau and  and M. Saillard, DORT method as applied to electromagnetic subsurface sensing, Radio Sci., 38 (2003), pp. 1038–1049. ras RASCAD 0048-6604 Radio Sci. CrossrefISIGoogle Scholar

  • [20]  J. C. Mosher and  and R. M. Leahy, Source localization using recursively applied and projected (RAP) MUSIC, IEEE Trans. Signal Processing, 47 (1999), pp. 332–340. itl ITPRED 1053-587X IEEE Trans. Signal Process. CrossrefISIGoogle Scholar

  • [21]  C. Prada and  and J.‐L. Thomas, Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix, J. Acoust. Soc. Amer., 114 (2003), pp. 235–243. jas JASMAN 0001-4966 J. Acoust. Soc. Am. CrossrefISIGoogle Scholar

  • [22]  C. Prada, J.‐L. Thomas and , and M. Fink, The iterative time reversal process: Analysis of the convergence, J. Acoust. Soc. Amer., 97 (1995), pp. 62–71. jas JASMAN 0001-4966 J. Acoust. Soc. Am. CrossrefISIGoogle Scholar

  • [23]  Google Scholar

  • [24]  Michael Vogelius and , Darko Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, M2AN Math. Model. Numer. Anal., 34 (2000), 723–748 10.1051/m2an:2000101 2001f:78024 CrossrefISIGoogle Scholar

  • [25]  Darko Volkov, Numerical methods for locating small dielectric inhomogeneities, Wave Motion, 38 (2003), 189–206 10.1016/S0165-2125(03)00047-7 2004f:78046 CrossrefISIGoogle Scholar