Abstract

We present a penalized version of Naghdi's model and a mixed formulation of the same model, in Cartesian coordinates for linearly elastic shells with little regularity, and finite element approximations thereof. Numerical tests are given that validate and illustrate our approach.

MSC codes

  1. 74K25
  2. 74S05
  3. 65N30

Keywords

  1. Naghdi's shell model
  2. finite element approximation
  3. penalty method
  4. mixed formulation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Sylvia Anicic, Hervé Le Dret, Annie Raoult, The infinitesimal rigid displacement lemma in Lipschitz co‐ordinates and application to shells with minimal regularity, Math. Methods Appl. Sci., 27 (2004), 1283–1299
2.
Douglas Arnold, Franco Brezzi, Locking‐free finite element methods for shells, Math. Comp., 66 (1997), 1–14
3.
M. Bernadou, Méthodes d’éléments finis pour les problèmes de coques minces, RMA 33, Masson, 1994.
4.
M. Bernadou, P. Ciarlet, B. Miara, Existence theorems for two‐dimensional linear shell theories, J. Elasticity, 34 (1994), 111–138
5.
Adel Blouza, Existence et unicité pour le modèle de Nagdhi pour une coque peu régulière, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 839–844
6.
Adel Blouza, Hervé Le Dret, Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math., 57 (1999), 317–337
7.
A. Blouza, H. Le Dret, Nagdhi’s shell model: existence, uniqueness and continuous dependence on the midsurface, J. Elasticity, 64 (2001), 199–216
8.
J. Bramble, J. Pasciak, A. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp., 47 (1986), 103–134
9.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer‐Verlag, New York, 1991.
10.
M. Carrive, P. Le Tallec, and J. Mouro, Approximation par éléments finis d’un modèle de coques géométriquement exact, Rev. Europ. Elements Finis, 4 (1995), pp. 633–662.
11.
D. Chapelle, A. Ferent, K. Bathe, 3D‐shell elements and their underlying mathematical model, Math. Models Methods Appl. Sci., 14 (2004), 105–142
12.
Dominique Chapelle, Rolf Stenberg, Stabilized finite element formulations for shells in a bending dominated state, SIAM J. Numer. Anal., 36 (1999), 32–73
13.
Philippe Ciarlet, The finite element method for elliptic problems, North‐Holland Publishing Co., 1978xix+530, Studies in Mathematics and its Applications, Vol. 4
14.
Mioara Boncuţ, Finite element approximation of the Navier‐Stokes equation, Gen. Math., 12 (2004), 61–68
15.
Nabil Kerdid, Pilar Mato Eiroa, Conforming finite element approximation for shells with little regularity, Comput. Methods Appl. Mech. Engrg., 188 (2000), 95–107
16.
Patrick Le Tallec, Saloua Mani, Analyse numérique d’un modèle de coques de Koiter discrétisé en base cartésienne par éléments finis DKT, RAIRO Modél. Math. Anal. Numér., 32 (1998), 433–450

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 636 - 654
ISSN (online): 1095-7170

History

Published online: 25 July 2006

MSC codes

  1. 74K25
  2. 74S05
  3. 65N30

Keywords

  1. Naghdi's shell model
  2. finite element approximation
  3. penalty method
  4. mixed formulation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media