This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform in two and three dimensions. The first digital transformation is based on unequally spaced fast Fourier transforms, while the second is based on the wrapping of specially selected Fourier samples. The two implementations essentially differ by the choice of spatial grid used to translate curvelets at each scale and angle. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. And both implementations are fast in the sense that they run in O(n^2 \log n) flops for n by n Cartesian arrays; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity. Our digital transformations improve upon earlier implementations—based upon the first generation of curvelets—in the sense that they are conceptually simpler, faster, and far less redundant. The software CurveLab, which implements both transforms presented in this paper, is available at http://www.curvelet.org.

  • [1]  C. Anderson and  and M. D. Dahleh, Rapid computation of the discrete Fourier transform, SIAM J. Sci. Comput., 17 (1996), pp. 913–919. 8sm SJOCE3 1064-8275 SIAM J. Sci. Comput. (USA) LinkISIGoogle Scholar

  • [2]  G. Beylkin, R. Coifman and , and V. Rokhlin, Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math., 44 (1991), pp. 141–183. cpa CPMAMV 0010-3640 Commun. Pure Appl. Math. CrossrefISIGoogle Scholar

  • [3]  G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmon. Anal., 2 (1995), pp. 363–381. 6gf ACOHE9 1063-5203 Appl. Comput. Harmon. Anal. CrossrefISIGoogle Scholar

  • [4]  E. J. Candès, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal., 6 (1999), pp. 197–218. 6gf ACOHE9 1063-5203 Appl. Comput. Harmon. Anal. CrossrefISIGoogle Scholar

  • [5]  E. J. Candès and  and L. Demanet, The curvelet representation of wave propagators is optimally sparse, Comm. Pure Appl. Math., 58 (2005), pp. 1472–1528. cpa CPMAMV 0010-3640 Commun. Pure Appl. Math. CrossrefISIGoogle Scholar

  • [6]  Google Scholar

  • [7]  E. J. Candes and  and D. L. Donoho, Ridgelets: The key to higher‐dimensional intermittency?, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), pp. 2495–2509. CrossrefISIGoogle Scholar

  • [8]  Google Scholar

  • [9]  E. J. Candès and  and D. L. Donoho, Recovering edges in ill‐posed inverse problems: Optimality of curvelet frames, Ann. Statist., 30 (2002), pp. 784 ‐842. 9j7 ASTSC7 0090-5364 Ann. Stat. ISIGoogle Scholar

  • [10]  E. J. Candès and  and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise‐$C^2$ singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219–266. cpa CPMAMV 0010-3640 Commun. Pure Appl. Math. CrossrefISIGoogle Scholar

  • [11]  Google Scholar

  • [12]  E. J. Candès and  and F. Guo, New multiscale transforms, minimum total variation synthesis: Application to edge‐preserving image reconstruction, Sig. Process., 82 (2002), pp. 1519–1543. spq SPRODR 0165-1684 Signal Process. CrossrefISIGoogle Scholar

  • [13]  R. H. Chan and  and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), pp. 427–482. sir SIREAD 0036-1445 SIAM Rev. LinkISIGoogle Scholar

  • [14]  Google Scholar

  • [15]  Google Scholar

  • [16]  M. N. Do and  and M. Vetterli, The contourlet transform: An efficient directional multiresolution image representation, IEEE Trans. Image Process., 14 (2005), pp. 2091–2106. iei IIPRE4 1057-7149 IEEE Trans. Image Process. CrossrefISIGoogle Scholar

  • [17]  D. L. Donoho, Wedgelets: Nearly‐minimax estimation of edges, Ann. Statist., 27 (1999), pp. 859–897. 9j7 ASTSC7 0090-5364 Ann. Stat. CrossrefISIGoogle Scholar

  • [18]  Google Scholar

  • [19]  Google Scholar

  • [20]  Google Scholar

  • [21]  A. J. W. Duijndam and  and M. A. Schonewille, Nonuniform fast Fourier transform, Geophys., 64 (1999), pp. 539–551. CrossrefISIGoogle Scholar

  • [22]  A. Dutt and  and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14 (1993), pp. 1368–1393. 8sm SJOCE3 1064-8275 SIAM J. Sci. Comput. (USA) LinkISIGoogle Scholar

  • [23]  A. Dutt and  and V. Rokhlin, Fast Fourier transforms for nonequispaced data II, Appl. Comput. Harmon. Anal., 2 (1995), pp. 85–100. 6gf ACOHE9 1063-5203 Appl. Comput. Harmon. Anal. CrossrefISIGoogle Scholar

  • [24]  Google Scholar

  • [25]  Google Scholar

  • [26]  Google Scholar

  • [27]  Google Scholar

  • [28]  K. Guo, D. Labate, W. Lim, G. Weiss and , and E. Wilson, Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), pp. 78–87. CrossrefISIGoogle Scholar

  • [29]  K. Guo, D. Labate, W. Lim, G. Weiss and , and E. Wilson, Wavelets with composite dilations and their MRA properties, Appl. Comput. Harmon. Anal., 20 (2006), pp. 202–236. 6gf ACOHE9 1063-5203 Appl. Comput. Harmon. Anal. CrossrefISIGoogle Scholar

  • [30]  Google Scholar

  • [31]  E. Le Pennec and  and S. Mallat, Sparse geometric image representations with bandelets, IEEE Trans. Image Process., 14 (2005), pp. 423–438. iei IIPRE4 1057-7149 IEEE Trans. Image Process. CrossrefISIGoogle Scholar

  • [32]  Google Scholar

  • [33]  Google Scholar

  • [34]  Google Scholar

  • [35]  E. P. Simoncelli, W. T. Freeman, E. H. Adelson and , and D. J. Heeger, Shiftable multi‐scale transforms [or what’s wrong with orthonormal wavelets], IEEE Trans. Inform. Theory, 38 (1992), pp. 587–607. iet IETTAW 0018-9448 IEEE Trans. Inf. Theory CrossrefISIGoogle Scholar

  • [36]  H. A. Smith, A parametrix construction for wave equations with $C^{1,1}$ coefficients, Ann. Inst. Fourier (Grenoble), 48 (1998), pp. 797–835. CrossrefISIGoogle Scholar

  • [37]  J. L. Starck, E. J. Candès and , and D. L. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Process., 11 (2002), pp. 670–684. iei IIPRE4 1057-7149 IEEE Trans. Image Process. CrossrefISIGoogle Scholar

  • [38]  J.‐L. Starck, N. Aghanim and , and O. Forni, Detecting cosmological non‐Gaussian signatures by multi‐scale methods, Astronomy and Astrophysics, 416 (2004), pp. 9–17. aae AAEJAF 0004-6361 Astron. Astrophys. CrossrefISIGoogle Scholar

  • [39]  J. L. Starck, M. Elad and , and D. L. Donoho, Redundant multiscale transforms and their application for morphological component analysis, Advances in Imaging and Electron Physics, 132 (2004), pp. 132–195. aie AIEPFQ 1076-5670 Adv. Imaging Electron Phys. CrossrefISIGoogle Scholar

  • [40]  G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp. 171–176. std SAPMB6 0022-2526 Stud. Appl. Math. CrossrefISIGoogle Scholar

  • [41]  P. Vandergheynst and  and J. F. Gobbers, Directional dyadic wavelet transforms: Design and algorithms, IEEE Trans. Image Process., 11 (2002), pp. 363–372. iei IIPRE4 1057-7149 IEEE Trans. Image Process. CrossrefISIGoogle Scholar

  • [42]  Google Scholar