Abstract

The treewidth of a graph is a useful combinatorial measure of how close the graph is to a tree. We prove that a quantum circuit with T gates whose underlying graph has a treewidth d can be simulated deterministically in $T^{O(1)}\exp[O(d)]$ time, which, in particular, is polynomial in T if $d=O(\log T)$. Among many implications, we show efficient simulations for log-depth circuits whose gates apply to nearby qubits only, a natural constraint satisfied by most physical implementations. We also show that one-way quantum computation of Raussendorf and Briegel (Phys. Rev. Lett., 86 (2001), pp. 5188–5191), a universal quantum computation scheme with promising physical implementations, can be efficiently simulated by a randomized algorithm if its quantum resource is derived from a small-treewidth graph with a constant maximum degree. (The requirement on the maximum degree was removed in [I. L. Markov and Y. Shi, preprint:quant-ph/0511069].)

MSC codes

  1. 81P68
  2. 68Q05
  3. 68Q10
  4. 05C83
  5. 68R10

Keywords

  1. quantum computation
  2. computational complexity
  3. treewidth
  4. tensor network
  5. classical simulation
  6. one-way quantum computation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Rev. A, 70 (2004), p. 052328-1–052328-14.
2.
D. Aharonov, A. Kitaev, and N. Nisan, Quantum circuits with mixed states, in Proceedings of the 30th Annual ACM Symposium on the Theory of Computation (STOC), Dallas, TX, ACM Press, New York, 1998, pp. 20–30.
3.
D. Aharonov, Z. Landau, and J. Makowsky, The quantum FFT can be classically simulated, preprint: quant-ph/0611156.
4.
J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed parameter algorithms for dominating set and related problems on planar graphs, Algorithmica, 33 (2002), pp. 461–493.
5.
S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability—a survey, BIT, 25 (1985), pp. 2–23.
6.
S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebraic and Discrete Methods, 8 (1987), pp. 277–284.
7.
H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett., 86 (2001), pp. 910–913.
8.
H. L. Bodlaender, Treewidth: Characterizations, Applications, and Computations, Technical report UU-CS-2006-041, Universiteit Utrecht, Utrecht, The Netherlands, 2006.
9.
S. Bravyi and R. Raussendorf, On measurement-based quantum computation with the toric code states, preprint: quant-ph/0610102.
10.
E. Broering and S. Lokam, Width-based algorithms for SAT and Circuit-SAT (extended abstract), in Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003), Santa Margherita, Italy, Lecture Notes in Comput. Sci. 2919, Springer-Verlag, 2004, pp. 162–171.
11.
R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence, 113 (1999), pp. 41–85.
12.
D. Gottesman, The Heisenberg representation of quantum computers, in Proceedings of the 22nd International Colloquium on Group Theoretical Methods in Physics, Group 22: S. P. Corney, R. Delbourgo, and P. D. Jarvis, eds., International Press, Cambridge, MA, 1999, pp. 32–43. Long version: quant-ph/9807006.
13.
S. A. Fenner, F. Green, S. Homer, and Y. Zhang, Bounds on the power of constant-depth quantum circuits, in Proceedings of the 15th International Symposium on Fundamentals of Computation Theory (FCT), Lübeck, Germany, 2005, Lecture Notes in Comput. Sci. 3623, M. Liskiewicz and R. Reischuk, eds., Springer, Berlin, 2005, pp. 44–55.
14.
A. W. Joshi, Matrices and Tensors in Physics, Halsted Press [John Wiley & Sons], New York-London-Sydney, 1975.
15.
R. Jozsa, On the simulation of quantum circuits, preprint: quant-ph/0603163.
16.
R. Jozsa and N. Linden, On the role of entanglement in quantum computational speed-up, Lond. Proc. R. Soc. Ser. A Math. Phys. Eng. Sci., 459, 2003, pp. 2011–2032.
17.
S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes, Accurate reliability evaluation and enhancement via probabilistic transfer matrices, in Proceedings of the Design Automation and Test in Europe (DATE'05), Munich, Germany, 2005, pp. 282–287.
18.
A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988), pp. 261–277.
19.
I. L. Markov and Y. Shi, Simulating quantum computation by contracting tensor networks, preprint: quant-ph/0511069.
20.
I. L. Markov and Y. Shi, Constant Degree Graph Expansions and Treewidth, manuscript.
21.
M. van den Nest, W. Dür, G Vidal, and H J. Briegel, Classical simulation versus universality in measurement based quantum computation, Phys. Rev. A, 75 (2007), p. 012337.
22.
M. van den Nest, A. Miyake, W. Dür, and H. J Briegel, Universal resources for measurement-based quantum computation, Phys. Rev. Lett., 97 (2006), p. 150504.
23.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
24.
D. Porras, F. Verstraete, and J. I. Cirac, Renormalization algorithm for the calculation of spectra of interacting quantum systems, preprint: cond-mat/0504717.
25.
R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett., 86 (2001), pp. 5188–5191.
26.
N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7 (1986), pp. 309–322.
27.
N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, J. Comb. Theory Series B, 36 (1984), pp. 49–64.
28.
N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-decomposition, Journal of Comb. Theory Ser. B, 52 (1991), pp. 153–190.
29.
D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970), pp. 597–609.
30.
V. P. Roychowdhury and F. Vatan, Quantum formulas: A lower bound and simulation, SIAM J. Comput., 31 (2001), pp. 460–476.
31.
B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits, Phys. Rev. A, 65 (2002), pp. 32325–32334.
32.
B. M. Terhal and D. P. DiVincenzo, Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games, Quantum Inf. Comput., 4 (2004), pp. 134–145.
33.
L. G. Valiant, Quantum circuits that can be simulated classically in polynomial time, SIAM J. Comput., 31 (2002), pp. 1229–1254.
34.
F. Verstraete and J. I. Cirac, Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions, preprint: cond-mat/0407066.
35.
F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Phys. Rev. Lett., 93 (2004), p. 207204.
36.
G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., 91 (2003), p. 147902.
37.
G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett., 93 (2004), p. 040502.
38.
P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Experimental one-way quantum computing, Nature, 434 (2005), pp. 169–176.
39.
N. Yoran and A. Short, Efficient classical simulation of the approximate quantum Fourier transform, Phys. Rev. A, 76 (2007), p. 042321.
40.
A. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, 1993, IEEE Comput. Soc. Press, Los Alamitos, CA, 1993, pp. 352–361.
41.
M. Zwolak and G. Vidal, Mixed-State dynamics in one-dimensional quantum lattice systems: A time-dependent superoperator renormalization algorithm, Phys. Rev. Lett., 93 (2004), p. 207205.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 963 - 981
ISSN (online): 1095-7111

History

Submitted: 10 November 2005
Accepted: 27 November 2007
Published online: 25 June 2008

MSC codes

  1. 81P68
  2. 68Q05
  3. 68Q10
  4. 05C83
  5. 68R10

Keywords

  1. quantum computation
  2. computational complexity
  3. treewidth
  4. tensor network
  5. classical simulation
  6. one-way quantum computation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media