Abstract

We consider control‐volume mixed finite element methods for the approximation of second‐order elliptic problems on rectangular grids. These methods associate control volumes (covolumes) with the vector variable as well as the scalar, obtaining local algebraic representation of the vector equation (e.g., Darcy’s law) as well as the scalar equation (e.g., conservation of mass). We establish $O(h^2)$ superconvergence for both the scalar variable in a discrete $L^2$‐norm and the vector variable in a discrete $H({\rm div})$‐norm. The analysis exploits a relationship between control‐volume mixed finite element methods and the lowest order Raviart–Thomas mixed finite element methods.

MSC codes

  1. 65N06
  2. 65N12
  3. 65N15
  4. 65N30
  5. 76S05

Keywords

  1. control volume
  2. mixed finite element
  3. error estimates
  4. superconvergence

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Aavatsmark, T. Barkve, O. Bøe, and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods, SIAM J. Sci. Comput., 19 (1998), pp. 1700–1716.
2.
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
3.
T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295–1315.
4.
T. Arbogast, M. F. Wheeler, and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell‐centered finite differences, SIAM J. Numer. Anal., 34 (1997), pp. 828–852.
5.
M. Berndt, K. Lipnikov, D. Moulton, and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation, East‐West J. Numer. Math., 9 (2001), pp. 265–284.
6.
M. Berndt, K. Lipnikov, M. Shashkov, M. F. Wheeler, and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals, SIAM J. Numer. Anal., 43 (2005), pp. 1728–1749.
7.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer‐Verlag, New York, 1991.
8.
Z. Cai, J. E. Jones, S. F. McCormick, and T. F. Russell, Control‐volume mixed finite element methods, Comput. Geosci., 1 (1997), pp. 289–315.
9.
S.‐H. Chou and D. Y. Kwak, Mixed covolume methods on rectangular grids for elliptic problems, SIAM J. Numer. Anal., 37 (2000), pp. 758–771.
10.
S.‐H. Chou, D. Y. Kwak, and K. Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: The overlapping covolume case, SIAM J. Numer. Anal., 39 (2001), pp. 1170–1196.
11.
S.‐H. Chou and P. S. Vassilevski, A general mixed covolume framework for constructing conservative schemes for elliptic problems, Math. Comp., 68 (1999), pp. 991–1011.
12.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, New York, 1978.
13.
P. J. Davis, Interpolation and Approximation, Dover Publications, New York, 1975.
14.
J. Douglas, Jr., and F. A. Milner, Interior and superconvergence estimates for mixed methods for second order elliptic problems, RAIRO Modél. Math. Anal. Numér., 19 (1985), pp. 397–428.
15.
J. Douglas, Jr., and J. Wang, Superconvergence of mixed finite element methods on rectangular domains, Calcolo, 26 (1989), pp. 121–133.
16.
R. Durán, Superconvergence for rectangular mixed finite elements, Numer. Math., 58 (1990), pp. 287–298.
17.
M. G. Edwards and C. F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2 (1998), pp. 259–290.
18.
R. E. Ewing, R. D. Lazarov, and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), pp. 1015–1029.
19.
V. A. Garanzha and V. N. Konshin, Approximation Schemes and Discrete Well Models for the Numerical Simulation of the 2‐D Non‐Darcy Fluid Flows in Porous Media, Tech. rep., Comm. Appl. Math., Computer Centre, Russian Academy of Sciences, Moscow, 1999.
20.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
21.
J. Hyman, J. Morel, M. Shashkov, and S. Steinberg, Mimetic finite difference methods for diffusion equations, Comput. Geosci., 6 (2002), pp. 333–352.
22.
R. A. Klausen and T. F. Russell, Relationships among some locally conservative discretization methods which handle discontinuous coefficients, Comput. Geosci., 8 (2004), pp. 341–377.
23.
T. P. Mathew, Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems, Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, 1989.
24.
R. L. Naff, T. F. Russell, and J. D. Wilson, Shape functions for velocity interpolation in general hexahedral cells, Comput. Geosci., 6 (2002), pp. 285–314.
25.
M. Nakata, A. Weiser, and M. F. Wheeler, Some superconvergence results for mixed finite element methods for elliptic problems on rectangular domains, in The Mathematics of Finite Elements and Applications V, J. R. Whiteman, ed., Academic Press, London, 1985, pp. 367–389.
26.
J. A. Nitsche and A. H. Schatz, Interior estimates for Ritz‐Galerkin methods, Math. Comp., 28 (1974), pp. 937–958.
27.
R. A. Raviart and J. M. Thomas, A Mixed Finite Element Method for 2nd Order Elliptic Problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer‐Verlag, New York, 1977, pp. 292–315.
28.
J. E. Roberts and J.‐M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, P. G. Ciarlet and J. Lions, eds., Elsevier Science Publishers B. V., Amsterdam, 1991, pp. 523–639.
29.
T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in The Mathematics of Reservoir Simulation, R. E. Ewing, ed., SIAM, Philadelphia, 1983, pp. 35–106.
30.
A. Weiser and M. F. Wheeler, On convergence of block‐centered finite‐differences for elliptic problems, SIAM J. Numer. Anal., 25 (1988), pp. 351–375.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 223 - 235
ISSN (online): 1095-7170

History

Submitted: 29 November 2005
Accepted: 4 August 2006
Published online: 22 January 2007

MSC codes

  1. 65N06
  2. 65N12
  3. 65N15
  4. 65N30
  5. 76S05

Keywords

  1. control volume
  2. mixed finite element
  3. error estimates
  4. superconvergence

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.