Abstract

Nonlinear Schrödinger equations (NLSs) with focusing power nonlinearities have solitary wave solutions. The spectra of the linearized operators around these solitary waves are intimately connected to stability properties of the solitary waves and to the long-time dynamics of solutions of NLSs. We study these spectra in detail, both analytically and numerically.

MSC codes

  1. 35Q55
  2. 35P15

Keywords

  1. spectrum
  2. linearized operator
  3. nonlinear Schrödinger equation
  4. solitary waves
  5. stability

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Almeida and Y. Guo, Dynamical instability of symmetric vortices, Rev. Mat. Iberoamericana, 17 (2001), pp. 409–419.
2.
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I., Arch. Rational Mech. Anal., 82 (1983), pp. 313–345.
3.
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II., Arch. Rational Mech. Anal., 82 (1983), pp. 347–375.
4.
V. S. Buslaev and V. E. Grikurov, Simulation of instability of bright solitons for NLS with saturating nonlinearity, Math. Comput. Simulation, 56 (2001), pp. 539–546.
5.
T. Cazenave, Semilinear Schrödinger equations, AMS, Providence, RI, 2003.
6.
G. Chen, J. Zhou, and W.-M. Ni, Algorithms and visualization for solutions of nonlinear elliptic equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), pp. 1565–1612.
7.
A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math., 56 (2003), pp. 1565–1607.
8.
S. Cuccagna, D. Pelinovsky, and V. Vougalter, Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math., 58 (2005), pp. 1–29.
9.
L. Demanet and W. Schlag, Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation, Nonlinearity, 19 (2006), pp. 829–852.
10.
J. Fröhlich, S. Gustafson, L. Jonsson, and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys., 250 (2004), pp. 613–642.
11.
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., John Hopkins University Press, Baltimore, MD, 1996.
12.
V. E. Grikurov, Perturbation of Instable Solitons for Generalized NLS with Saturating Nonlinearity, http://math.nw.ru/$\!_{^{\sim}}\!$grikurov/publlist.html/proc_DD97.ps.gz.
13.
M. Grillakis, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math., 41 (1988), pp. 747–774.
14.
M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), pp. 160–197.
15.
S. Gustafson, K. Nakanishi, and T.-P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves, Int. Math. Res. Not., 2004 (2004), pp. 3559–3584.
16.
T. M. Hwang and W. Wang, Analyzing and visualizing a discretized semilinear elliptic problem with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 18 (2002), pp. 261–279.
17.
J. Iaia and H. Warchall, Nonradial solutions of a semilinear elliptic equation in two dimensions, J. Differential Equations, 119 (1995), pp. 533–558.
18.
E. Kirr and A. Zarnescu, On the asymptotic stability of bound states in 2D cubic Schrödinger equation, Comm. Math. Phys., 272 (2007), pp. 443–468.
19.
M. K. Kwong, Uniqueness of positive solutions of $\Delta u -u + u^p=0$ in $\R^n$, Arch. Rational Mech. Anal., 105 (1989), pp. 243–266.
20.
M.-C. Lai, A note on finite difference discretizations for Poisson equation on a disk, Numer. Methods Partial Differential Equations, 17 (2001), pp. 199–203.
21.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.
22.
P. L. Lions, Solutions complexes d'équations elliptiques semilinéaires dans $R\sp N$, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), pp. 673–676.
23.
V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991.
24.
T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation, Differential Integral Equations, 18 (2005), pp. 431–450.
25.
T. Mizumachi, Instability of bound states for 2D nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 13 (2005), pp. 413–428.
26.
T. Mizumachi, A remark on linearly unstable standing wave solutions to NLS, Nonlinear Anal., 64 (2006), pp. 657–676.
27.
T. Mizumachi, Instability of vortex solitons for 2D focusing NLS, Adv. Differential Equations, 12 (2007), pp. 241–264.
28.
S. I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl., 5 (1965), pp. 1408–1411.
29.
I. Rodnianski, W. Schlag, and A. Soffer, Asymptotic Stability of N-Soliton States of NLS, http://arxiv.org/abs/math.AP/0309114.
30.
W. Schlag, Stable Manifolds for an Orbitally Unstable NLS, http://arxiv.org/abs/ math.AP/0405435.
31.
J. Shatah and W. Strauss, Spectral condition for instability, in Nonlinear PDE's, Dynamics and Continuum Physics (South Hadley, MA, 1998), Contemp. Math. 255, AMS, Providence, RI, 2000, pp. 189–198.
32.
W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), pp. 149–162.
33.
W. Strauss, Nonlinear Wave Equations, AMS, Providence, RI, 1989.
34.
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse, Springer-Verlag, Berlin, 1999.
35.
E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, 2nd ed., Clarendon Press, Oxford, UK, 1962.
36.
T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schroedinger equations: Resonance dominated and dispersion dominated solutions, Comm. Pure Appl. Math., 55 (2002), pp. 153–216.
37.
T.-P. Tsai and H.-T. Yau, Stable directions for excited states of nonlinear Schrödinger equations, Comm. Partial Differential Equations, 27 (2002), pp. 2363–2402.
38.
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), pp. 567–576.
39.
M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), pp. 472–491.
40.
M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), pp. 51–68.
41.
J. H. Wilkinson, Convergence of the LR, QR, and related algorithms, Comput. J., 8 (1965), pp. 77–84.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 1070 - 1111
ISSN (online): 1095-7154

History

Submitted: 25 December 2005
Accepted: 5 April 2007
Published online: 24 October 2007

MSC codes

  1. 35Q55
  2. 35P15

Keywords

  1. spectrum
  2. linearized operator
  3. nonlinear Schrödinger equation
  4. solitary waves
  5. stability

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media