Abstract

The problem of an elliptic differential equation with nonsmooth coefficients is studied. It is assumed that the coefficients are double periodic with the period H and the right-hand side is smooth. The behavior of the solution for $H \to 0$ is investigated and theorems about limiting solution are proved. The study is related to the homogenization ideas used in an intuitive way in the theory of nuclear reactors and theory of composite materials.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. D. Aschenbach, C. T. Sun, E. H. Lee, The directionally reinforced composite as a homogenous continuum with microstructureDynamics of Composite Materials, The American Society of Mechanical Engineers, New York, 1972, 48–67
2.
Ivo Babuška, Finite element method for domains with corners, Computing (Arch. Elektron. Rechnen), 6 (1970), 264–273
3.
Ivo Babuška, Michael B. Rosenzweig, A finite element scheme for domains with corners, Numer. Math., 20 (1972/73), 1–21
4.
I. Babuška, R. B. Kellogg, Numerical solution of the neutron diffusion equation in the presence of corners and interfacesNumerical Reactor Calculations, Internat. Atomic Energy Agency, Vienna, 1972, 473–486
5.
Ivo Babuška, A. K. Aziz, Survey lectures on the mathematical foundations of the finite element methodThe mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York, 1972, 1–359
6.
I. Babuška, R. B. Kellogg, Mathematical and computational problems in reactor calculations, Proc. 1973 Conference on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (Univ. of Michigan, Ann Arbor, Mich., 1973), Univ. of Michigan Press, VII-67–VII-94
7.
I. Babuška, Solution of problems with interfaces and singularities, Proc. Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, Madison, Wis., Academic Press, New York, 1974, 213–279
8.
I. Babuška, Numerical solution of partial differential equations, Z. Angew. Math. Mech., 54 (1974), T3–T10
9.
O. V. Besov, The behavior of differentiable functions on a nonsmooth surface, Trudy Mat. Inst. Steklov., 117 (1972), 3–10, 343
10.
E. Ja. Hruslov, The method of orthogonal projections and the Dirichlet boundary value problem in domains with a “fine-grained” boundary, Mat. Sb. (N.S.), 88(130) (1972), 38–60
11.
J. R. Dietrich, W. H. Zinn, Solid Fuel Reactors, Addison-Wesley, Reading, Mass., 1958
12.
G. J. Fix, S. Gulati, G. I. Wakoff, On the use of singular functions with finite element approximations, J. Computational Phys., 13 (1973), 209–228
13.
Joseph E. Flaherty, Joseph B. Keller, Elastic behavior of composite media, Comm. Pure Appl. Math., 26 (1973), 565–580
14.
R. Froehlich, Current problems in multidimensional reactor calculations, Proc. 1973 Conference on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems (Univ. of Michigan, Ann Arbor, Michigan, 1973), Univ. of Michigan Press, VII-1–VII-66
15.
Emilio Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305
16.
Pierre Grisvard, Problème de Dirichlet dans un cone, Ricerche Mat., 20 (1971), 175–192
17.
Z. Hashin, Theory of fibers reinforced materials, NASA Report, NASA CR-1974, National Aeronautics and Space Administration, Washington, D.C., 1972, 704 pp.
18.
S. K. Garg, V. Svalbonas, G. A. Gurtman, Analysis of Structural Composite Materials, Marcel Dekker, New York, 1973
19.
J. Crank, The mathematics of diffusion, Clarendon Press, Oxford, 1975ix+414
20.
P. D. Hilton, G. C. Sih, G. C. Sih, Applications of the finite element method to the calculations of stress intensity factorsMechanics of Fracture. Methods of Analysis and Solutions of Crack Problems, Noordhoff International, Leyden, the Netherlands, 1972, 426–483
21.
R. Bruce Kellogg, On the Poisson equation with intersecting interfaces, Applicable Anal., 4 (1974/75), 101–129
22.
R. B. Kellogg, Higher order singularities for interface problemsThe mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York, 1972, 589–602
23.
V. Z. Kondratjev, Boundary problems for elliptic equations with conical or angular points, Trans. Moscow Math. Soc., 16 (1967), 297–313
24.
L. D. Kudrjavcev, Imbedding theorems for classes of functions defined in the whole space or in the half-space. II, Mat. Sb. (N.S.), 70 (112) (1966), 3–35, 10 (1966), pp. 616–639
25.
L. D. Kudrjavcev, Solution of the first boundary value problem for self-adjoint elliptic equations in the case of an unbounded region, Izv. Akad. Nauk SSSR Ser. Mat., 31 (1967), 1179–1199
26.
Jaroslav Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 7 (82) (1957), 418–449
27.
J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968xx+372
28.
V. A. Marčenko, G. V. Suzikov, The second boundary value problem in regions with a complex boundary, Mat. Sb. (N.S.), 69 (111) (1966), 35–60, 65 (1964), pp. 458–472
29.
K. N. Mukhin, V. K. Makarin, A. P. Venediklov, Diffusion of thermal neutrons in anisotropic media, Rep., AEC-tr-4716, U.S. Atomic Energy Commission, Washington, D.C., 1960
30.
A. Radkowsky, Naval Reactors Handbook, Vol. I, U.S. Government Printing Office, Washington, D. C., 1964
31.
Lester A. Rubenfeld, Joseph B. Keller, Bounds on elastic moduli of composite media, SIAM J. Appl. Math., 17 (1969), 495–510
32.
P. K. Senatorov, Coefficient stability of the solutions of second order ordinary differential equations and of parabolic equations on the plane, Differencial' nye Uravnenija, 7 (1971), 754–758
33.
Y. V. Shevelev, Neutron diffusion in a one-dimensional uranium-water lattice, J. Nuclear Energy, 6 (1957), 132–141
34.
S. L. Sobolev, The density of compactly supported functions in the space $L\sb{p}{}\sp{(m)}(E\sb{n})$, Sibirsk. Mat. Ž., 4 (1963), 673–682
35.
Sergio Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore, Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 657–699
36.
S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche., Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 571-597; errata, ibid. (3), 22 (1968), 673–
37.
Gilbert Strang, George J. Fix, An analysis of the finite element method, Prentice-Hall Inc., Englewood Cliffs, N. J., 1973, 257–281
38.
S. Ukai, A study on approximate methods for calculating the neutron flux in a heterogenous reactor, J. Nuclear Energy, 24 (1970), 479–491
39.
R. M. Barrer, J. Crank, G. S. Parks, Diffusion and permeation in heterogenous mediaDiffusion in Polymers, Academic Press, New York, 1968
40.
Ivo Babuška, Homogenization and its application. Mathematical and computational problemsNumerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), Academic Press, New York, 1976, 89–116
41.
I. Babuška, Homogenization approach in engineering, 1975, Proc. Second International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, to appear. (Tech. Note BN 828, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1975.)
42.
I. Babuška, Solution of Interface Problems by Homogenization. III, Tech. Note BN 827, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, 1975
43.
N. S. Bahvalov, Averaged characteristics of bodies with periodic structure, Dokl. Akad. Nauk SSSR, 218 (1974), 1046–1048
44.
Alain Bensoussan, Jacques-Louis Lions, Georges Papanicolaou, Sur quelques phénomènes asymptotiques stationnaires, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975), Aii, A89–A94
45.
A. Bensoussan, J. L. Lions, G. Papanicolaou, Sur quelques phénomènes asymptotiques d'évolution, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975), Ai, A317–A322
46.
A. Bensoussan, J. L. Lions, G. Papanicolaou, Sur de nouveaux problèmes asymptotiques, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), Ai, A143–A147
47.
J.-L. Lions, Introduction to some aspects of free surface problemsNumerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), Academic Press, New York, 1976, 373–391
48.
J. L. Lions, Asymptotic behaviour of solutions of variational inequalities with highly oscillating coefficients, 1975, Proc. of Joint IUTAM/IMU Symposium on Applications of Methods of Functional Analysis to Problems of Mechanics, Marseille, France, to appear
49.
P. Marcellini, G. Sbordone, An approach to asymptotic behaviour of elliptic—parabolic operators, Rep., 1975/76/5, Istituto Matematico, Ulisse Dini, University degli Studi di Firenze, 1976
50.
Sergio Spagnolo, Convergence in energy for elliptic operatorsNumerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), Academic Press, New York, 1976, 469–498

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 603 - 634
ISSN (online): 1095-7154

History

Submitted: 26 April 1974
Published online: 17 February 2012

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media