Abstract

The convergence, as $\varepsilon \downarrow 0$, of the functional $F_\varepsilon (\Psi ) = \int _{\mathbb{R}^N } u_\varepsilon (x)\Psi (x,{x / \varepsilon })$ associated with a given $L^2 $ function $u_\varepsilon $ with support in a fixed compact set is studied. The test functions $\Psi (x,y)$ are continuous on $\mathbb{R}^N \times \mathbb{R}^N $ and periodic in y. A convergence theorem is proved under the weaker assumption that $u_\varepsilon $ remains in a bounded subset of $L^2 $. Finally, the use of multiple-scale expansions in homogenization is justified, and a new approach is proposed for the mathematical analysis of homogenization problems.

MSC codes

  1. 35B40
  2. 41A35

Keywords

  1. partial differential equations
  2. homogenization
  3. convergence
  4. functional
  5. periodic

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, Vol. 5, North-Holland Publishing Co., Amsterdam, 1978xxiv+700
2.
N. Bourbaki, Eléments de Mathématiques, Vol. XIII, Intégration, Hermann, Paris, 1965
3.
R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965xiii+781
4.
F. Fleury, Propagation des ondes dans une suspension de particules solides, Compt. Rend. Acad. Sci. Paris, sér. A, 288 (1979), 77–80
5.
T. Levy, Propagation of waves in a fluid-saturated porous elastic solid, Internat. J. Engrg. Sci., 17 (1979), 1005–1014
6.
G. Nguetseng, Masters Thesis, Sur quelques problèmes de perturbations dans des ouverts périodiques et applications à la mécanique des composites, Thèse d'Etat, Université Paris 6, 1984
7.
Enrique Sanchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, Vol. 127, Springer-Verlag, Berlin, 1980ix+398, Heidelberg, New York
8.
Laurent Schwartz, Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966xiii+420
9.
L. Tartar, Problèmes d'homogenization dans les équations aux dérivées partielles, 1977, Cours Peccot (rédigé par F. Murat), Collège de France
10.
R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 608 - 623
ISSN (online): 1095-7154

History

Submitted: 17 December 1986
Accepted: 26 April 1988
Published online: 17 July 2006

MSC codes

  1. 35B40
  2. 41A35

Keywords

  1. partial differential equations
  2. homogenization
  3. convergence
  4. functional
  5. periodic

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media