Abstract

Some functional inequalities satisfied by complete elliptic integrals of the first kind are obtained. These inequalities are sharp and generalize the functional identity of Landen. A related inequality is given for certain quotients of such integrals.

MSC codes

  1. 33A25
  2. 33A70
  3. 30C60

Keywords

  1. complete elliptic integral
  2. quasiconformal mapping
  3. functional inequality
  4. Teichmüller ring
  5. Grotzsch ring

Get full access to this article

View all available purchase options and get full access to this article.

References

AS.
M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun. Third printing, with corrections. National Bureau of Standards Applied Mathematics Series, Vol. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965xiv+1046
A.
Glen D. Anderson, Derivatives of the conformal capacity of extremal rings, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 29–46
AV.
G. D. Anderson, M. K. Vamanamurthy, Inequalities for elliptic integrals, Publ. Inst. Math. (Beograd) (N.S.), 37(51) (1985), 61–63
AVV1.
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Dimension-free quasiconformal distortion in n-space, Trans. Amer. Math. Soc., 297 (1986), 687–706
AVV2.
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Sharp distortion theorems for quasiconformal mappings, Trans. Amer. Math. Soc., 305 (1988), 95–111
AVV3.
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Special functions of quasiconformal theory, Exposition. Math., 7 (1989), 97–136
AVV4.
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for the extremal distortion functionComplex analysis, Joensuu 1987, Lecture Notes in Math., Vol. 1351, Springer, Berlin, 1988, 1–11, Proc. Thirteenth Rolf Nevanlinna Colloquium, New York
BB1.
J. M. Borwein, P. B. Borwein, The arithmetic-geometric mean and fast computation of elementary functions, SIAM Rev., 26 (1984), 351–366
BB2.
Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1987xvi+414
BO.
F. Bowman, Introduction to elliptic functions with applications, Dover Publications Inc., New York, 1961ii+115
BF.
Paul F. Byrd, Morris D. Friedman, Handbook of elliptic integrals for engineers and physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd LXVII, Springer-Verlag, Berlin, 1954xiii+355, New York
CG.
B. C. Carlson, John L. Gustafson, Asymptotic expansion of the first elliptic integral, SIAM J. Math. Anal., 16 (1985), 1072–1092
C.
A. Cayley, An Elementary Treatise on Elliptic Functions, Deighton, Bell, and Co., Cambridge, U.K., 1876
E.
A. Enneper, Elliptische Functionen, Theorie und Geschichte, Louis Nebert, Halle, Germany, 1890
F.
J. S. Frame, 1988, Letter to G. D. Anderson, dated October 19, 20
FR.
Carl-Erik Fröberg, Complete elliptic integrals; Lund University, Department of Numerical Analysis, Table No. 2, CWK Gleerup, Lund, 1957, 82–, Sweden
G1.
F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc., 101 (1961), 499–519
G2.
F. W. Gehring, Inequalities for condensers, hyperbolic capacity, and extremal lengths, Michigan Math. J., 18 (1971), 1–20
LF.
A. V. Lebedev, R. M. Fedorova, A guide to mathematical tables, English edition prepared from the Russian by D. G. Fry, Pergamon Press, New York, 1960xlvi+586, Elmsford
LEVU.
Matti Lehtinen, Matti Vuorinen, On Teichmüller's modulus problem in the plane, Rev. Roumaine Math. Pures Appl., 33 (1988), 97–106
LV.
O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, New York, 1973viii+258, Berlin, Grundlehren Math. Wiss. 126, Second edition
TO.
John Todd, Basic Numerical Mathematics. Vol. 1, International Series of Numerical Mathematics, Vol. 14, Birkhäuser Verlag, Basel, 1979, 253–
TR.
F. Tricomi, Lectures on the Use of Special Functions by Calculations with Electronic Computers, Lecture Series 47, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, MD, 1966
VU1.
Matti Vuorinen, On Teichmüller's modulus problem in ${\bf R}\sp n$, Math. Scand., 63 (1988), 315–333
VU2.
Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, Vol. 1319, Springer-Verlag, Berlin, 1988xx+209, New York
WW.
E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, London, 1958

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 536 - 549
ISSN (online): 1095-7154

History

Submitted: 25 January 1988
Accepted: 7 March 1989
Published online: 17 February 2012

MSC codes

  1. 33A25
  2. 33A70
  3. 30C60

Keywords

  1. complete elliptic integral
  2. quasiconformal mapping
  3. functional inequality
  4. Teichmüller ring
  5. Grotzsch ring

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.