Abstract

The authors study monotoneity and convexity properties of the Gaussian hypergeometric function, particularly the special cases of complete elliptic integrals. They also prove functional inequalities for these functions and various combinations of them and present some conjectures about inequalities for these functions.

MSC codes

  1. 33E05
  2. 33C05
  3. 33C75

Keywords

  1. elliptic integral
  2. hypergeometric function

Get full access to this article

View all available purchase options and get full access to this article.

References

AS.
M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun. Third printing, with corrections. National Bureau of Standards Applied Mathematics Series, Vol. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965xiv+1046
AV1.
G. D. Anderson, M. K. Vamanamurthy, Affine mappings and elliptic functions, Publ. Inst. Math. (Beograd) (N.S.), 11(25) (1971), 85–87
AV2.
G. D. Anderson, M. K. Vamanamurthy, Inequalities for elliptic integrals, Publ. Inst. Math. (Beograd) (N.S.), 37(51) (1985), 61–63
AVV1.
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Special functions of quasiconformal theory, Exposition. Math., 7 (1989), 97–136
AVV2.
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal., 21 (1990), 536–549
A.
Richard Askey, N. K. Thakara, Ramanujan and hypergeometric and basic hypergeometric seriesRamanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 1989, 1–83, December 26–28
BB.
Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1987xvi+414
B.
F. Bowman, Introduction to elliptic functions with applications, Dover Publications Inc., New York, 1961ii+115
BF.
Paul F. Byrd, Morris D. Friedman, Handbook of elliptic integrals for engineers and physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd LXVII, Springer-Verlag, Berlin, 1954xiii+355, Göttingen, Heidelberg
C1.
B. C. Carlson, A hypergeometric mean value, Proc. Amer. Math. Soc., 16 (1965), 759–766
C2.
Billie Chandler Carlson, Special functions of applied mathematics, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1977xv+335
C3.
B. C. Carlson, A table of elliptic integrals of the second kind, Math. Comp., 49 (1987), 595–606, S13–S17
CG.
B. C. Carlson, John L. Gustafson, Asymptotic expansion of the first elliptic integral, SIAM J. Math. Anal., 16 (1985), 1072–1092
CH.
T. W. Chaundy, Elementary differential equations, With a preface by J. Bryce McLeod, Clarendon Press, Oxford, 1969xii+414
CK.
S. Conde, S. L. Kalla, A table of Gauss' hypergeometric function 2F1(a,b;c;x), Universidad del Zulia, Venezuela, 1979
H.
Einar Hille, Hypergeometric functions and conformal mapping, J. Differential Equations, 34 (1979), 147–152
KCH.
Shyam L. Kalla, Salvador Conde, J. L. Hubbell, Some results on generalized elliptic-type integrals, Appl. Anal., 22 (1986), 273–287
KLH.
Shyam L. Kalla, C. Leubner, J. L. Hubbell, Further results on generalized elliptic-type integrals, Appl. Anal., 25 (1987), 269–274
K.
R. Kühnau, Eine Methode, die Positivität einer Funktion zu prüfen, Z. Angew. Math. Mech., 74 (1994), 140–143
L.
Derek F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York, 1989xiv+334
LV.
O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Vol. 126, Springer-Verlag, New York, 1973viii+258, Second ed., Die Grundlehren der math. Wiss., Berlin
M.
D. S. Mitrinović, Analytic inequalities, In cooperation with P. M. Vasić. Die Grundlehren der mathematischen Wisenschaften, Band 1965, Springer-Verlag, New York, 1970xii+400
PT1.
W. H. Press, S. A. Teukolsky, Elliptic Integrals, Comput. Phys., (1990), 92–96, January-February
PT2.
W. H. Press, S. A. Teukolsky, Hypergeometric functions by direct path integration, Comput. Phys., (1990), 320–323, May-June
PBM.
A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Gordon and Breach Science Publishers, New York, 1988, trans. from the Russian by G.G. Gould
R.
Earl D. Rainville, Special functions, The Macmillan Co., New York, 1960xii+365
SS.
Megumi Saigo, H. M. Srivastava, The behavior of the zero-balanced hypergeometric series ${}\sb pF\sb {p-1}$ near the boundary of its convergence region, Proc. Amer. Math. Soc., 110 (1990), 71–76
SE.
Vladimir I. Semenov, Certain applications of the quasiconformal and quasi-isometric deformations, Rev. Roumaine Math. Pures Appl., 36 (1991), 503–511
SO.
J. Spanier, K. B. Oldham, An Atlas of Functions, Hemisphere (Harper & Row), Washington, New York, London, 1987
VU.
Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, Vol. 1319, Springer-Verlag, Berlin, 1988xx+209, New York
WW.
E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1958

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 512 - 524
ISSN (online): 1095-7154

History

Submitted: 20 June 1990
Accepted: 23 July 1991
Published online: 17 February 2012

MSC codes

  1. 33E05
  2. 33C05
  3. 33C75

Keywords

  1. elliptic integral
  2. hypergeometric function

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media