Homogenization and Two-Scale Convergence
Abstract
Following an idea of G. Nguetseng, the author defines a notion of “two-scale” convergence, which is aimed at a better description of sequences of oscillating functions. Bounded sequences in $L^2 (\Omega )$ are proven to be relatively compact with respect to this new type of convergence. A corrector-type theorem (i.e., which permits, in some cases, replacing a sequence by its “two-scale” limit, up to a strongly convergent remainder in $L^2 (\Omega )$) is also established. These results are especially useful for the homogenization of partial differential equations with periodically oscillating coefficients. In particular, a new method for proving the convergence of homogenization processes is proposed, which is an alternative to the so-called energy method of Tartar. The power and simplicity of the two-scale convergence method is demonstrated on several examples, including the homogenization of both linear and nonlinear second-order elliptic equations.
[1] , An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481–496 10.1016/0362-546X(92)90015-7 93a:35014 0779.35011
[2] , Homogénéisation et convergence à deux échelles. Application à un problème de convection diffusion, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 581–586 93d:76063 0724.46033
[3] , Homogenization of the unsteady Stokes equations in porous mediaProgress in partial differential equations: calculus of variations, applications (Pont-à-Mousson, 1991),
Pitman Res. Notes Math. Ser. , Vol. 267, Longman Sci. Tech., Harlow, 1992, 109–123 93m:35022 0801.35103[4] , Homogenization of the Neumann problem with nonisolated holes, Asymptotic Anal., 7 (1993), 81–95 95e:35023 0823.35014
[5] , Homogénéisation non locale pour des équations dégénérées à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 963–966 92b:35024 0762.35007
[6] , Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823–836 10.1137/0521046 91d:76074 0698.76106
[7] , Homogenization: averaging processes in periodic media, Math. Appl., Vol. 36, Kluwer Academic Publishers, Dordrecht, 1990
[8] , M. Rascle, , D. Serre and , M. Slemrod, A version of the fundamental theorem for Young measuresPDEs and continuum models of phase transitions (Nice, 1988),
Lecture Notes in Phys. , Vol. 344, Springer, Berlin, 1989, 207–215 91c:49021 0991.49500[9] , $W\sp{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58 (1984), 225–253 87g:49011a 0549.46019
[10] , Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, Vol. 5, North-Holland Publishing Co., Amsterdam, 1978xxiv+700 82h:35001 0404.35001
[11] , Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d'une mesure, Espaces $L\sp{p}$, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1175, Hermann, Paris, 1965, 283– 36:2763 0136.03404
[12] , Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 9 (1985), 313–321 88i:49010 0582.49014
[13] , Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590–607 10.1016/0022-247X(79)90211-7 81j:35017 0427.35073
[14] , User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1–67 92j:35050 0755.35015
[15] , Correctors for the homogenization of monotone operators, Differential Integral Equations, 3 (1990), 1151–1166 91k:35032 0733.35005
[16] , Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat. (6), 8 (1975), 277–294 51:11233 0316.35036
[17] , G-operators and $\Gamma$-convergence, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, 1175–1191, August 1983, PWN Polish Scientific Publishers and North-Holland 87e:49033 0568.35025
[18] , Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223–270 86g:35121 0616.35055
[19] , Homogenization of linear and nonlinear transport equations, Comm. Pure Appl. Math., 45 (1992), 301–326 92k:35026 0794.35014
[20] , Correctors for the homogenization of conservation laws with oscillatory forcing terms, Asymptotic Anal., 5 (1992), 311–316 92m:35170
[21] , Analyse convexe et problèmes variationnels, Dunod, 1974x+340, Paris 57:3931a 0281.49001
[22] , The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359–375 91c:35017 0679.35001
[23] , Periodic homogenization of certain fully non-linear partial differential equations, to appear
[24] , personal communication
[25] , personal communication
[26] , Homogenization of linear transport equations with oscillatory vector fields, SIAM J. Appl. Math., 52 (1992), 34–45 10.1137/0152003 92k:35028 0759.35008
[27] , Darcy's law for flow in porous media and the two-space methodNonlinear partial differential equations in engineering and applied science (Proc. Conf., Univ. Rhode Island, Kingston, R.I., 1979),
Lecture Notes in Pure and Appl. Math. , Vol. 54, Dekker, New York, 1980, 429–443 81h:76051 0439.76017[28] , Averaging of parabolic operators with almost periodic coefficients, Mat. Sb. (N.S.), 117(159) (1982), 69–85 83d:35076 0487.35050
[29] , De Giorgi, Homogénéisation non locale, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 189–203 81d:35058 0408.35026
[30] , Some methods in the mathematical analysis of systems and their control, Kexue Chubanshe (Science Press), Beijing, 1981xxiii+542, Gordon and Breach 84m:49003 0542.93034
[31] , Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl. (4), 117 (1978), 139–152 81j:35008 0395.49007
[32] , $\Gamma$-limite d'une fonctionnelle liée à un phénomène de mémoire, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 67–70 92d:49021 0734.34068
[33] , Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189–212 88h:73006
[34] , H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes, 1978
[35] , Correctors for monotone problems in non-periodic homogenization, to appear
[36] , A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608–623 10.1137/0520043 90j:35030 0688.35007
[37] , Asymptotic analysis for a stiff variational problem arising in mechanics, SIAM J. Math. Anal., 21 (1990), 1394–1414 10.1137/0521078 91m:73006 0723.73011
[38] , On the homogenization of elliptic operators with almost-periodic coefficients, Rend. Sem. Mat. Fis. Milano, 52 (1982), 149–166 (1985) 87e:35031 0568.35029
[39] , Multicomponent homogenization of processes in strongly nonhomogeneous structures, Math. USSR Sbornik, 69 (1991), 143–153 0719.35006
[40] , Nonhomogeneous media and vibration theory, Lecture Notes in Physics, Vol. 127, Springer-Verlag, Berlin, 1980ix+398 82j:35010 0432.70002
[41] , B. Hubbard, Convergence in energy for elliptic operatorsNumerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), Academic Press, New York, 1976, 469–498 57:16971 0347.65034
[42] , Cours Peccot au Collége de France, partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished
[43] , Topics in nonlinear analysis, Publications Mathématiques d'Orsay 78, Vol. 13, Université de Paris-Sud Département de Mathématique, Orsay, 1978ii+271 pp. (not consecutively paged) 81b:35001 0395.00008
[44] , Convergence of the homogenization process, Lecture Notes in Phys. 127, Springer-Verlag, New York, 1980, Appendix of Nonhomogeneous media and vibration theory
[45] , R. J. Knops, Compensated compactness and applications to partial differential equationsNonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV,
Res. Notes in Math. , Vol. 39, Pitman, Boston, Mass., 1979, 136–212 81m:35014 0437.35004[46] , F. Colombini, Nonlocal effects induced by homogenizationPartial differential equations and the calculus of variations, Vol. II,
Progr. Nonlinear Differential Equations Appl. , Vol. 2, Birkhäuser Boston, Boston, MA, 1989, 925–938 91c:35018 0682.35028[47] , Navier-Stokes equations, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam, 1979x+519 82b:35133
[48] , Functional Analysis, Springer-Verlag, Berlin, 1964
[49] , Averaging and G-convergence of differential operators, Russian Math. Surveys, 34 (1979), 69–147 0445.35096