Homogenization and Two-Scale Convergence

Following an idea of G. Nguetseng, the author defines a notion of “two-scale” convergence, which is aimed at a better description of sequences of oscillating functions. Bounded sequences in $L^2 (\Omega )$ are proven to be relatively compact with respect to this new type of convergence. A corrector-type theorem (i.e., which permits, in some cases, replacing a sequence by its “two-scale” limit, up to a strongly convergent remainder in $L^2 (\Omega )$) is also established. These results are especially useful for the homogenization of partial differential equations with periodically oscillating coefficients. In particular, a new method for proving the convergence of homogenization processes is proposed, which is an alternative to the so-called energy method of Tartar. The power and simplicity of the two-scale convergence method is demonstrated on several examples, including the homogenization of both linear and nonlinear second-order elliptic equations.

  • [1]  E. Acerbi, V. Chiado Piat, G. Dal Maso and , D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481–496 10.1016/0362-546X(92)90015-7 93a:35014 0779.35011 CrossrefISIGoogle Scholar

  • [2]  Grégoire Allaire, Homogénéisation et convergence à deux échelles. Application à un problème de convection diffusion, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 581–586 93d:76063 0724.46033 Google Scholar

  • [3]  G. Allaire, Homogenization of the unsteady Stokes equations in porous mediaProgress in partial differential equations: calculus of variations, applications (Pont-à-Mousson, 1991), Pitman Res. Notes Math. Ser., Vol. 267, Longman Sci. Tech., Harlow, 1992, 109–123 93m:35022 0801.35103 Google Scholar

  • [4]  Grégoire Allaire and , François Murat, Homogenization of the Neumann problem with nonisolated holes, Asymptotic Anal., 7 (1993), 81–95 95e:35023 0823.35014 Google Scholar

  • [5]  Youcef Amirat, Kamel Hamdache and , Abdelhamid Ziani, Homogénéisation non locale pour des équations dégénérées à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 963–966 92b:35024 0762.35007 Google Scholar

  • [6]  Todd Arbogast, Jim Douglas and , Ulrich Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823–836 10.1137/0521046 91d:76074 0698.76106 LinkISIGoogle Scholar

  • [7]  N. Bakhvalov and , G. Panasenko, Homogenization: averaging processes in periodic media, Math. Appl., Vol. 36, Kluwer Academic Publishers, Dordrecht, 1990 Google Scholar

  • [8]  J. Ball, M. Rascle, D. Serre and , M. Slemrod, A version of the fundamental theorem for Young measuresPDEs and continuum models of phase transitions (Nice, 1988), Lecture Notes in Phys., Vol. 344, Springer, Berlin, 1989, 207–215 91c:49021 0991.49500 CrossrefGoogle Scholar

  • [9]  J. M. Ball and , F. Murat, $W\sp{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58 (1984), 225–253 87g:49011a 0549.46019 CrossrefISIGoogle Scholar

  • [10]  Alain Bensoussan, Jacques Louis Lions and , George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, Vol. 5, North-Holland Publishing Co., Amsterdam, 1978xxiv+700 82h:35001 0404.35001 Google Scholar

  • [11]  N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d'une mesure, Espaces $L\sp{p}$, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1175, Hermann, Paris, 1965, 283– 36:2763 0136.03404 Google Scholar

  • [12]  Andrea Braides, Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 9 (1985), 313–321 88i:49010 0582.49014 Google Scholar

  • [13]  Doïna Cioranescu and , Jeannine Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590–607 10.1016/0022-247X(79)90211-7 81j:35017 0427.35073 CrossrefISIGoogle Scholar

  • [14]  Michael Crandall, Hitoshi Ishii and , Pierre Louis Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1–67 92j:35050 0755.35015 CrossrefISIGoogle Scholar

  • [15]  Gianni Dal Maso and , Anneliese Defranceschi, Correctors for the homogenization of monotone operators, Differential Integral Equations, 3 (1990), 1151–1166 91k:35032 0733.35005 Google Scholar

  • [16]  Ennio De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat. (6), 8 (1975), 277–294 51:11233 0316.35036 Google Scholar

  • [17]  Ennio De Giorgi, G-operators and $\Gamma$-convergence, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, 1175–1191, August 1983, PWN Polish Scientific Publishers and North-Holland 87e:49033 0568.35025 Google Scholar

  • [18]  Ronald DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223–270 86g:35121 0616.35055 CrossrefISIGoogle Scholar

  • [19]  Weinan E, Homogenization of linear and nonlinear transport equations, Comm. Pure Appl. Math., 45 (1992), 301–326 92k:35026 0794.35014 CrossrefISIGoogle Scholar

  • [20]  Weinan E and , Denis Serre, Correctors for the homogenization of conservation laws with oscillatory forcing terms, Asymptotic Anal., 5 (1992), 311–316 92m:35170 CrossrefGoogle Scholar

  • [21]  Ivar Ekeland and , Roger Temam, Analyse convexe et problèmes variationnels, Dunod, 1974x+340, Paris 57:3931a 0281.49001 Google Scholar

  • [22]  Lawrence C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359–375 91c:35017 0679.35001 CrossrefISIGoogle Scholar

  • [23]  Lawrence C. Evans, Periodic homogenization of certain fully non-linear partial differential equations, to appear Google Scholar

  • [24]  G. Francfort, personal communication Google Scholar

  • [25]  P. Gérard and , F. Murat, personal communication Google Scholar

  • [26]  Thomas Hou and , Xue Xin, Homogenization of linear transport equations with oscillatory vector fields, SIAM J. Appl. Math., 52 (1992), 34–45 10.1137/0152003 92k:35028 0759.35008 LinkISIGoogle Scholar

  • [27]  Joseph B. Keller, Darcy's law for flow in porous media and the two-space methodNonlinear partial differential equations in engineering and applied science (Proc. Conf., Univ. Rhode Island, Kingston, R.I., 1979), Lecture Notes in Pure and Appl. Math., Vol. 54, Dekker, New York, 1980, 429–443 81h:76051 0439.76017 Google Scholar

  • [28]  S. Kozlov, O. Oleinik and , V. Zhikov, Averaging of parabolic operators with almost periodic coefficients, Mat. Sb. (N.S.), 117(159) (1982), 69–85 83d:35076 0487.35050 Google Scholar

  • [29]  J. L. Lions, De Giorgi, Homogénéisation non locale, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 189–203 81d:35058 0408.35026 Google Scholar

  • [30]  J. L. Lions, Some methods in the mathematical analysis of systems and their control, Kexue Chubanshe (Science Press), Beijing, 1981xxiii+542, Gordon and Breach 84m:49003 0542.93034 Google Scholar

  • [31]  Paolo Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl. (4), 117 (1978), 139–152 81j:35008 0395.49007 CrossrefGoogle Scholar

  • [32]  Luisa Mascarenhas, $\Gamma$-limite d'une fonctionnelle liée à un phénomène de mémoire, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 67–70 92d:49021 0734.34068 Google Scholar

  • [33]  Stefan Muller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189–212 88h:73006 CrossrefISIGoogle Scholar

  • [34]  F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes, 1978 Google Scholar

  • [35]  F. Murat, Correctors for monotone problems in non-periodic homogenization, to appear Google Scholar

  • [36]  Gabriel Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608–623 10.1137/0520043 90j:35030 0688.35007 LinkISIGoogle Scholar

  • [37]  Gabriel Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics, SIAM J. Math. Anal., 21 (1990), 1394–1414 10.1137/0521078 91m:73006 0723.73011 LinkISIGoogle Scholar

  • [38]  O. Oleinik and , V. Zhikov, On the homogenization of elliptic operators with almost-periodic coefficients, Rend. Sem. Mat. Fis. Milano, 52 (1982), 149–166 (1985) 87e:35031 0568.35029 CrossrefGoogle Scholar

  • [39]  G. Panasenko, Multicomponent homogenization of processes in strongly nonhomogeneous structures, Math. USSR Sbornik, 69 (1991), 143–153 0719.35006 CrossrefISIGoogle Scholar

  • [40]  Enrique Sanchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, Vol. 127, Springer-Verlag, Berlin, 1980ix+398 82j:35010 0432.70002 Google Scholar

  • [41]  Sergio Spagnolo, B. Hubbard, Convergence in energy for elliptic operatorsNumerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), Academic Press, New York, 1976, 469–498 57:16971 0347.65034 CrossrefGoogle Scholar

  • [42]  L. Tartar, Cours Peccot au Collége de France, partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished Google Scholar

  • [43]  Luc Tartar, Topics in nonlinear analysis, Publications Mathématiques d'Orsay 78, Vol. 13, Université de Paris-Sud Département de Mathématique, Orsay, 1978ii+271 pp. (not consecutively paged) 81b:35001 0395.00008 Google Scholar

  • [44]  Luc Tartar, Convergence of the homogenization process, Lecture Notes in Phys. 127, Springer-Verlag, New York, 1980, Appendix of Nonhomogeneous media and vibration theory Google Scholar

  • [45]  L. Tartar, R. J. Knops, Compensated compactness and applications to partial differential equationsNonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., Vol. 39, Pitman, Boston, Mass., 1979, 136–212 81m:35014 0437.35004 Google Scholar

  • [46]  Luc Tartar, F. Colombini, Nonlocal effects induced by homogenizationPartial differential equations and the calculus of variations, Vol. II, Progr. Nonlinear Differential Equations Appl., Vol. 2, Birkhäuser Boston, Boston, MA, 1989, 925–938 91c:35018 0682.35028 CrossrefGoogle Scholar

  • [47]  Roger Temam, Navier-Stokes equations, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam, 1979x+519 82b:35133 Google Scholar

  • [48]  K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1964 Google Scholar

  • [49]  V. Zhikov, S. Kozlov, O. Oleinik and , K. Ngoan, Averaging and G-convergence of differential operators, Russian Math. Surveys, 34 (1979), 69–147 0445.35096 CrossrefGoogle Scholar