Abstract

In this paper we derive a posteriori error estimates for space‐time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This allows us to set up an efficient adaptive algorithm which successively improves the accuracy of the computed solution by construction of locally refined meshes for time and space discretizations.

MSC codes

  1. 65N30
  2. 49K20
  3. 65M50
  4. 35K55

Keywords

  1. parabolic equations
  2. optimal control
  3. parameter identification
  4. a posteriori error estimation
  5. mesh refinement

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concepts, SIAM J. Control Optim., 39 (2000), pp. 113–132.
2.
R. Becker, D. Meidner, and B. Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods, Optim. Methods Softw., to appear.
3.
R. Becker and R. Rannacher, An Optimal Control Approach to A‐Posteriori Error Estimation, Acta Numer. 2001, Arieh Iserles, ed., Cambridge University Press, London, 2001, pp. 1–102.
4.
R. Becker and B. Vexler, A posteriori error estimation for finite element discretizations of parameter identification problems, Numer. Math., 96 (2004), pp. 435–459.
5.
R. Becker and B. Vexler, Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations, J. Comput. Phys., 206 (2005), pp. 95–110.
6.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40, SIAM, Philadelphia, 2002.
7.
A. R. Conn, N. Gould, and Ph. L. Toint, Trust‐Region Methods, MPS/SIAM Ser. Optim., SIAM, Philadelphia, 2000.
8.
R. Dautray and J.‐L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Springer‐Verlag, Berlin, 1992.
9.
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to Adaptive Methods for Differential Equations, Acta Numer. 1995, Arieh Iserles, ed., Cambridge University Press, London, 1995, pp. 105–158.
10.
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational differential equations, Cambridge University Press, Cambridge, 1996.
11.
K. Eriksson, C. Johnson, and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modelisation Math. Anal. Numer., 19 (1985), pp. 611–643.
12.
K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems V: Long‐time integration, SIAM J. Numer. Anal., 32 (1995), pp. 1750–1763.
13.
A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications, Transl. Math. Monogr. 187, AMS, Providence, 1999.
14.
A. Griewank and A. Walther, Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Software, 26 (2000), pp. 19–45.
15.
A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optim. Methods Softw., 1 (1992), pp. 35–54.
16.
M. Hinze, A variational discretization concept in control constrained optimization: The linear‐quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45–61.
17.
J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications, Lecture Notes in Earth Sci. 16, Springer‐Verlag, Berlin, 1999.
18.
J.‐L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss. 170, Springer‐Verlag, Berlin, 1971.
19.
W. Liu, H. Ma, T. Tang, and N. Yan, A posteriori error estimates for discontinuous galerkin time‐stepping method for optimal control problems governed by parabolic equations, SIAM J. Numer. Anal., 42 (2004), pp. 1032–1061.
20.
W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math, 15 (2001), pp. 285–309.
21.
W. Liu and N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic equations, Appl. Numer. Math., 47 (2003), pp. 173–187.
22.
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), pp. 970–985.
23.
J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer‐Verlag, New York, 1999.
24.
M. Picasso, Anisotropic A Posteriori Error Estimates for an Optimal Control Problem Governed by the Heat Equation, Internat. J. Numer. Methods PDE, 22 (2006), pp. 1314–1336.
25.
R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements, SIAM J. Control Optim., 44 (2005), pp. 1844–1863.
26.
M. Schmich and B. Vexler, Adaptivity with dynamic meshes for space‐time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., submitted.
27.
F. Tröltzsch, Optimale Steuerung Partieller Differentialgleichungen, Friedr. Vieweg & Sohn Verlag, Wiesbaden, 2005.
28.
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh‐Refinement Techniques, Wiley/Teubner, New York/Stuttgart, 1996.
29.
B. Vexler, Adaptive Finite Elements for Parameter Identification Problems, Ph.D. thesis, Institut für Angewandte Mathematik, Universität Heidelberg, 2004.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 116 - 142
ISSN (online): 1095-7138

History

Submitted: 4 January 2006
Accepted: 25 October 2006
Published online: 22 March 2007

MSC codes

  1. 65N30
  2. 49K20
  3. 65M50
  4. 35K55

Keywords

  1. parabolic equations
  2. optimal control
  3. parameter identification
  4. a posteriori error estimation
  5. mesh refinement

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.