Abstract

For finite-dimensional nonlinear control systems we study the relation between asymptotic null-controllability and control Lyapunov functions. It is shown that control Lyapunov functions (CLFs) may be constructed on the domain of asymptotic null-controllability as viscosity solutions of a first order PDE that generalizes Zubov's equation. The solution is also given as the value function of an optimal control problem from which several regularity results may be obtained.

MSC codes

  1. 93D10
  2. 35B37
  3. 49L25

Keywords

  1. asymptotic null-controllability
  2. control Lyapunov functions
  3. Hamilton–Jacobi–Bell-man equation
  4. viscosity solutions
  5. Zubov's method

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7 (1983), pp. 1163–1173.
2.
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems Control Found. Appl. 2, Birkhäuser Boston, Boston, MA, 1990.
3.
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 1997.
4.
M. Bardi and F. Da Lio, On the Bellman equation for some unbounded control problems, Nonlinear Differential Equations Appl., 4 (1997), pp. 491–510.
5.
G. Barles, An approach of deterministic control problems with unbounded data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), pp. 235–258.
6.
G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Math. Appl. (Berlin) 17, Springer-Verlag, Paris, 1994.
7.
E. N. Barron and R. Jensen, Lyapunov stability using minimum distance control, Nonlinear Anal., 43 (2001), pp. 923–936.
8.
R. W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory (Houghton, MI, 1982), Progr. Math. 27, Birkhäuser Boston, Boston, MA, 1983, pp. 181–191.
9.
F. Camilli, L. Grüne, and F. Wirth, A generalization of Zubov's method to perturbed systems, SIAM J. Control Optim., 40 (2001), pp. 496–515.
10.
F. H. Clarke, Yu. S. Ledyaev, L. Rifford, and R. J. Stern, Feedback stabilization and Lyapunov functions, SIAM J. Control Optim., 39 (2000), pp. 25–48.
11.
F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), pp. 1394–1407.
12.
F. H. Clarke, Y. S. Ledyaev, and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, J. Differential Equations, 149 (1998), pp. 69–114.
13.
J.-M. Coron, A necessary condition for feedback stabilization, Systems Control Lett., 14 (1990), pp. 227–232.
14.
F. Da Lio, On the Bellman equation for infinite horizon problems with unbounded cost functional, Appl. Math. Optim., 41 (2000), pp. 171–197.
15.
S. Dubljevič and N. Kazantsis, A new Lyapunov design approach for nonlinear systems based on Zubov's method, Automatica, 38 (2002), pp. 1999–2007.
16.
R. A. Freeman and P. V. Kokotovic, Inverse optimality in robust stabilization, SIAM J. Control Optim., 34 (1996), pp. 1365–1391.
17.
R. A. Freeman and P. V. Kokotović, Robust Nonlinear Control Design, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 1996.
18.
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math. 1904, Springer-Verlag, Berlin, 2007.
19.
S. F. Hafstein, A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10 (2004), pp. 657–678.
20.
W. Hahn, Stability of Motion, translated from the German manuscript by Arne P. Baartz, Grundlehren Math. Wiss. 138, Springer-Verlag, New York, 1967.
21.
Y. Kurcveı˘l, On the inversion of the second theorem of Lyapunov on stability of motion, Czechoslovak Math. J., 6 (1956), pp. 217–259, 455–484 (in Russian).
22.
Y. S. Ledyaev and E. D. Sontag, A Lyapunov characterization of robust stabilization, Nonlinear Anal., 37 (1999), pp. 813–840.
23.
Y. Lin, E. D. Sontag, and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control Optim., 34 (1996), pp. 124–160.
24.
M. Malisoff, Further results on the Bellman equation for optimal control problems with exit times and nonnegative Lagrangians, Systems Control Lett., 50 (2003), pp. 65–79.
25.
M. Malisoff, Further results on Lyapunov functions and domains of attraction for perturbed asymptotically stable systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), pp. 193–225.
26.
J. L. Massera, On Liapunov's condition of stability, Ann. of Math., 50 (1949), pp. 705–721.
27.
L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim., 39 (2000), pp. 1043–1064.
28.
L. Rifford, Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim., 41 (2002), pp. 659–681.
29.
E. P. Ryan, On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback, SIAM J. Control Optim., 32 (1994), pp. 1597–1604.
30.
R. Sepulchre, M. Janković, and P. V. Kokotović, Constructive Nonlinear Control, Comm. Control Engrg. Ser., Springer-Verlag, Berlin, 1997.
31.
E. D. Sontag, A Lyapunov-like characterization of asymptotic controllability, SIAM J. Control Optim., 21 (1983), pp. 462–471.
32.
E. D. Sontag, Comments on integral variants of ISS, Systems Control Lett., 34 (1998), pp. 93–100.
33.
E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd ed., Texts Appl. Math. 6, Springer-Verlag, New York, 1998.
34.
E. D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), NATO Sci. Ser. C Math. Phys. Sci. 528, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 551–598.
35.
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. I. Equations of unbounded and degenerate control problems without uniqueness, Adv. Differential Equations, 4 (1999), pp. 275–296.
36.
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints, Differential Integral Equations, 12 (1999), pp. 275–293.
37.
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{ KL}$ estimate involving two positive semidefinite functions, ESAIM Control Optim. Calc. Var., 5 (2000), pp. 313–367.
38.
F. W. Wilson Jr., The structure of the level surfaces of a Lyapunov function, J. Differential Equations, 3 (1967), pp. 323–329.
39.
V. I. Zubov, Methods of A. M. Lyapunov and Their Application, translation prepared under the auspices of the United States Atomic Energy Commission, Leo F. Boron, ed., P. Noordhoff, Groningen, The Netherlands, 1964.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 301 - 326
ISSN (online): 1095-7138

History

Submitted: 31 January 2006
Accepted: 3 July 2007
Published online: 22 January 2008

MSC codes

  1. 93D10
  2. 35B37
  3. 49L25

Keywords

  1. asymptotic null-controllability
  2. control Lyapunov functions
  3. Hamilton–Jacobi–Bell-man equation
  4. viscosity solutions
  5. Zubov's method

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media