Abstract

The subject of this work is the analysis and implementation of stabilized finite element methods on anisotropic meshes. We develop the anisotropic a priori error analysis of the residual-free-bubble (RFB) method applied to elliptic convection-dominated convection-diffusion problems in two dimensions, with finite element spaces of type $Q_k$, $k \geq 1$. In the case of $P_1$ finite elements, relying on the equivalence of the RFB method to classical stabilized finite element methods, we propose a new rule, justified through the analysis of the RFB method, for selecting the stabilization parameter in classical stabilized methods on two-dimensional anisotropic triangulations.

MSC codes

  1. 65N12
  2. 65N39
  3. 76M10

Keywords

  1. residual-free-bubble finite element method
  2. convection-dominated diffusion problems
  3. stabilized finite element methods

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. A. Adams, Sobolev Spaces, Pure Appl. Math. (Amst.) 65, Academic Press, New York, 1975.
2.
T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, Adv. Numer. Math., Teubner, Stuttgart, 1999.
3.
T. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math., 74 (1996), pp. 261–282.
4.
F. Brezzi, G. Hauke, L. D. Marini, and G. Sangalli, Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems, Math. Models Methods Appl. Sci., 13 (2003), pp. 445–461.
5.
F. Brezzi, T. J. R. Hughes, L. D. Marini, A. Russo, and E. Süli, A priori error analysis of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), pp. 1933–1948.
6.
F. Brezzi, D. Marini, and A. Russo, Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 51–63.
7.
F. Brezzi, D. Marini, and E. Süli, Residual-free bubbles for advection-diffusion problems: The general error analysis, Numer. Math., 85 (2000), pp. 31–47.
8.
F. Brezzi and L. D. Marini, Augmented spaces, two-level methods, and stabilizing subgrids, Internat. J. Numer. Methods Fluids, 40 (2002), pp. 31–46.
9.
F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4 (1994), pp. 571–587.
10.
A. Cangiani and E. Süli, A-Posteriori Error Estimators and RFB, Technical report NA-04/22, Computing Laboratory, 2004.
11.
A. Cangiani and E. Süli, Enhanced residual-free bubble method for convection-diffusion problems, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 1307–1313.
12.
A. Cangiani and E. Süli, Enhanced RFB method, Numer. Math., 101 (2005), pp. 273–308.
13.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
14.
L. Formaggia and S. Perotto, New anisotropic a priori error estimates, Numer. Math., 89 (2001), pp. 641–667.
15.
L. P. Franca and A. Russo, Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Appl. Math. Lett., 9 (1996), pp. 83–88.
16.
E. Georgoulis, E. Hall, and P. Houston, Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotopically refined meshes, SIAM J. Sci. Comput., to appear.
17.
E. H. Georgoulis, Discontinuous Galerkin Methods on Shape–Regular and Anisotropic Meshes, D.Phil. thesis, University of Oxford, 2003.
18.
E. H. Georgoulis and E. Süli, Optimal error estimates for the $hp$-version interior penalty discontinuous Galerkin finite element method, IMA J. Numer. Anal., 25 (2005), pp. 205–220.
19.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag, Berlin, 2001.
20.
W. Huang, Measuring mesh qualities and application to variational mesh adaptation, SIAM J. Sci. Comput., 26 (2005), pp. 1643–1666.
21.
W. Huang, Mathematical principles of anisotropic mesh adaptation, Commun. Comput. Phys., 1 (2006), pp. 276–310.
22.
C. Johnson, U. Nävert, and J. Pitkäranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45 (1984), pp. 285–312.
23.
G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes, Adv. Comput. Math., 15 (2001), pp. 237–259.
24.
N. Madden and M. Stynes, Efficient generation of Shishkin meshes in solving convection-diffusion problems, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 565–576.
25.
S. Micheletti, S. Perotto, and M. Picasso, Stabilized finite elements on anisotropic meshes: A priori error estimates for the advection-diffusion and the Stokes problems, SIAM J. Numer. Anal., 41 (2003), pp. 1131–1162.
26.
M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems, SIAM J. Sci. Comput., 24 (2003), pp. 1328–1355.
27.
U. Risch, Convergence analysis of the residual free bubble method for bilinear elements, SIAM J. Numer. Anal., 39 (2001), pp. 1366–1379.
28.
H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 1996.
29.
G. Sangalli, Global and local error analysis for the residual-free bubbles method applied to advection–dominated problems, SIAM J. Numer. Anal., 38 (2000), pp. 1496–1522.
30.
G. Sangalli, A discontinuous residual-free bubble method for advection-diffusion problems, J. Engrg. Math., 49 (2004), pp. 149–162.
31.
C. Schwab, p- and $hp$-Finite Element Methods, Oxford University Press, New York, 1998.
32.
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1654 - 1678
ISSN (online): 1095-7170

History

Submitted: 24 April 2006
Accepted: 9 May 2007
Published online: 17 August 2007

MSC codes

  1. 65N12
  2. 65N39
  3. 76M10

Keywords

  1. residual-free-bubble finite element method
  2. convection-dominated diffusion problems
  3. stabilized finite element methods

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media