Abstract

We compare the convergence behavior of Gauss quadrature with that of its younger brother, Clenshaw–Curtis. Seven-line MATLAB codes are presented that implement both methods, and experiments show that the supposed factor-of-2 advantage of Gauss quadrature is rarely realized. Theorems are given to explain this effect. First, following O'Hara and Smith in the 1960s, the phenomenon is explained as a consequence of aliasing of coefficients in Chebyshev expansions. Then another explanation is offered based on the interpretation of a quadrature formula as a rational approximation of $\log((z+1)/(z-1))$ in the complex plane. Gauss quadrature corresponds to Padé approximation at $z=\infty$. Clenshaw–Curtis quadrature corresponds to an approximation whose order of accuracy at $z=\infty$ is only half as high, but which is nevertheless equally accurate near $[-1,1]$.

MSC codes

  1. 65D32
  2. 41A20
  3. 41A58

Keywords

  1. Gauss quadrature
  2. Newton–Cotes
  3. Clenshaw–Curtis
  4. Chebyshev expansion
  5. rational approximation
  6. FFT
  7. spectral methods

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Acton, Numerical Methods That Work, Mathematical Association of America, Washington, D.C., 1990 (originally published in 1970 by Harper and Row, New York).
2.
B. K. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999), pp. 1551–1584.
3.
G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed., Cambridge University Press, Cambridge, UK, 1996.
4.
Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743–1770.
5.
S. Bernstein, Quelques remarques sur l'interpolation, Math. Ann., 79 (1919), pp. 1–12.
6.
H. Brass, Quadraturverfahren, Vandenhoeck and Ruprecht, Göttingen, 1977.
7.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, 2006.
8.
E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
9.
E. W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole, Pacific Grove, CA, 1999
10.
C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math., 2 (1960), pp. 197–205.
11.
G. Dahlquist and Å. Björck, Numerical Methods, Dover, Mineola, NY, 2003 (first published 1974 by Prentice-Hall, Englewood Cliffs, NJ).
12.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.
13.
R. A. DeVore and L. R. Scott, Error bounds for Gaussian quadrature and weighted-$L^1$ polynomial approximation, SIAM J. Numer. Anal., 21 (1984), pp. 400–412.
14.
Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York, 1987.
15.
J. D. Donaldson and D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal., 9 (1972), pp. 573–602.
16.
D. Elliott, Truncation errors in two Chebyshev series approximations, Math. Comp., 19 (1965), pp. 234–248.
17.
D. Elliott, B. Johnston, and P. Johnston, Clenshaw–Curtis and Gauss–Legendre Quadrature for Certain Boundary Element Integrals, manuscript, 2006.
18.
H. Engels, Numerical Quadrature and Cubature, Academic Press, London, 1980.
19.
G. Evans, Practical Numerical Integration, Wiley, Chichester, UK, 1993.
20.
L. Fejér, Mechanische Quadraturen mit positiven Cotesschen Zahlen, Math. Z., 37 (1933), pp. 287–309.
21.
S. Filippi, Angenäherte Tschebyscheff-Approximation einer Stammfunktion—eine Modifikation des Verfahrens von Clenshaw und Curtis, Numer. Math., 6 (1964), pp. 320–328.
22.
C.-E. Fröberg, Numerical Mathematics: Theory and Computer Applications, Benjamin/Cummings, Menlo Park, CA, 1985.
23.
P. V. Galkin, Estimates for the Lebesgue constants, Proc. Steklov Inst. Math., 109 (1971), pp. 1–4.
24.
T. Gamelin and H. Rossi, Jensen measures and algebras of analytic functions, in Function Algebras, F. Birtel, ed., Scott-Foresman, Chicago, 1966, pp. 15–35.
25.
C. F. Gauss, Methodus nova integralium valores per approximationem inveniendi, Comment. Soc. Reg. Scient. Gotting. Recent., 1814 (also in Gauss's Werke, Vol. III, pp. 163–196).
26.
W. Gautschi, A survey of Gauss–Christoffel quadrature formulae, in E. B. Christoffel (Aachen/Monschau, 1979), P. L. Butzer and F. Fehér, eds., Birkhäuser, Basel, 1981, pp. 72–147.
27.
W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser, Boston, 1997.
28.
W. M. Gentleman, Implementing Clenshaw–Curtis quadrature. I, Comm. ACM, 15 (1972), pp. 337–342.
29.
W. M. Gentleman, Implementing Clenshaw–Curtis quadrature. II, Comm. ACM, 15 (1972), pp. 343–346.
30.
G. H. Golub and J. M. Ortega, Scientific Computing and Differential Equations: An Introduction to Numerical Methods, Academic Press, Boston, 1992.
31.
G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969), pp. 221–230.
32.
M. H. Gutknecht and L. N. Trefethen, Real polynomial Chebyshev approximation by the Carathéodory–Fejér method, SIAM J. Numer. Anal., 19 (1982), pp. 358–371.
33.
N. Hale and L. N. Trefethen, New quadrature formulas from conformal maps, SIAM J. Numer. Anal., to appear.
34.
M. Heath, Scientific Computing: An Introductory Survey, 2nd ed., McGraw Hill, Boston, 2002.
35.
P. Henrici, Elements of Numerical Analysis, Wiley, New York, 1964.
36.
J. P. Imhof, On the method for numerical integration of Clenshaw and Curtis, Numer. Math., 5 (1963), pp. 138–141.
37.
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover, New York, 1994 (first published in 1966 by Wiley, New York).
38.
L. W. Johnson and R. D. Riess, Numerical Analysis, Addison-Wesley, Reading, MA, 1982.
39.
R. Kress, Numerical Analysis, Springer, New York, 1998.
40.
A. R. Krommer and C. W. Ueberhuber, Computational Integration, SIAM, Philadelphia, 1998.
41.
P. K. Kythe and M. R. Schäferkotter, Handbook of Computational Methods for Integration, Chapman and Hall/CRC, Boca Raton, FL, 2005.
42.
J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC, Boca Raton, FL, 2003.
43.
A. Neumaier, Introduction to Numerical Analysis, Cambridge University Press, Cambridge, UK, 2001.
44.
S. E. Notaris, Interpolatory quadrature formulae with Chebyshev abscissae, J. Comput. Appl. Math., 133 (2001), pp. 507–517.
45.
H. O'Hara and F. J. Smith, Error estimation in the Clenshaw–Curtis quadrature formula, Comput. J., 11 (1968), pp. 213–219.
46.
J. Ouspensky, Sur les valeurs asymptotiques des coefficients de Cotes, Bull. Amer. Math. Soc., 31 (1925), pp. 145–156.
47.
G. Pólya, Über die Konvergenz von Quadraturverfahren, Math. Z., 37 (1933), pp. 264–286.
48.
P. Rabinowitz, Rough and ready error estimates in Gaussian integration of analytic functions, Comm. ACM, 12 (1969), pp. 268–270.
49.
T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd ed., Wiley, New York, 1990.
50.
I. H. Sloan and W. H. Smith, Product integration with the Clenshaw–Curtis points: Implementation and error estimates, Numer. Math., 34 (1980), pp. 387–401.
51.
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, New York, 1980.
52.
A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ, 1966.
53.
E. Süli and D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, UK, 2003.
54.
H. Takahasi and M. Mori, Estimation of errors in the numerical quadrature of analytic functions, Appl. Anal., 1 (1971), pp. 201–229.
55.
L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
56.
L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT, 46 (2006), pp. 653–670.
57.
C. W. Ueberhuber, Numerical Computation: Methods, Software, and Analysis, Vol. 1, Springer, Berlin, 1997.
58.
C. W. Ueberhuber, Numerical Computation: Methods, Software, and Analysis, Vol. 2, Springer, Berlin, 1997.
59.
J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT, 46 (2006), pp. 195–202.
60.
J. A. C. Weideman and L. N. Trefethen, The kink phenomenon in Fejér and Clenshaw–Curtis quadrature, Numer. Math., 107 (2007), pp. 707–727.
61.
W. P. Ziemer, Weakly Differentiable Functions, Springer, New York, 1989.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 67 - 87
ISSN (online): 1095-7200

History

Submitted: 13 May 2006
Accepted: 23 October 2006
Published online: 1 February 2008

MSC codes

  1. 65D32
  2. 41A20
  3. 41A58

Keywords

  1. Gauss quadrature
  2. Newton–Cotes
  3. Clenshaw–Curtis
  4. Chebyshev expansion
  5. rational approximation
  6. FFT
  7. spectral methods

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media