Abstract

Recently, a strong link has been discovered between supermodularity on lattices and tractability of optimization problems known as maximum constraint satisfaction problems. This paper strengthens this link. We study the problem of maximizing a supermodular function which is defined on a product of n copies of a fixed finite lattice and given by an oracle. We exhibit a large class of finite lattices for which this problem can be solved in oracle-polynomial time in n. We also obtain new large classes of tractable maximum constraint satisfaction problems.

MSC codes

  1. 90C27
  2. 68Q25
  3. 68T20

Keywords

  1. supermodular function
  2. lattices
  3. optimization
  4. tractability
  5. constraint satisfaction

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge properties in optimization, Discrete Appl. Math., 70 (1996), pp. 95–161.
2.
D. Cohen, M. Cooper, and P. Jeavons, An algebraic characterization of complexity for valued constraints, Lecture Notes in Comput. Sci. 4204, Springer-Verlag, Berlin, 2006, pp. 107–121.
3.
D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, Supermodular functions and the complexity of MAX CSP, Discrete Appl. Math., 149 (2005), pp. 53–72.
4.
D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, The complexity of soft constraint satisfaction, Artificial Intelligence, 170 (2006), pp. 983–1016.
5.
N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean Constraint Satisfaction Problems, SIAM Monogr. Discrete Math. Appl. 7, SIAM, Philadelphia, 2001.
6.
R. Dechter, Constraint Processing, Morgan Kaufmann, San Francisco, CA, 2003.
7.
V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin, Supermodularity on chains and complexity of maximum constraint satisfaction, in Proceedings of Eurocomb'05, Vol. AE, DMTCS, Berlin, Germany, 2005, pp. 51–56.
8.
V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin, The Approximability of MAX CSP with Fixed-Value Constraints, Technical report CoRR cs.CC/0602075, 2006.
9.
A. Frank, Applications of submodular functions, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 187, K. Walker, ed., Cambridge University Press, Cambridge, UK, 1993, pp. 85–136.
10.
A. Frank, Matroids and submodular functions, in Annotated Bibliographies in Combinatorial Optimization, M. Dell'Amico, F. Maffoli, and S. Martello, eds., John Wiley, Chichester, UK, 1997, pp. 65–80.
11.
S. Fujishige, Submodular Functions and Optimization, Ann. Discrete Math. 58, 2nd ed., Elsevier, Amsterdam, 2005.
12.
A. Goldberg and R. E. Tarjan, A new approach to the maximum-flow problem, J. Assoc. Comput. Mach., 35 (1988), pp. 921–940.
13.
G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser-Verlag, Basel, Switzerland, 2002.
14.
G. Grätzer and D. Kelly, Products of lattice varieties, Algebra Universalis, 21 (1985), pp. 33–45.
15.
D. Hobby and R. N. McKenzie, The Structure of Finite Algebras, Contemp. Math. 76, AMS, Providence, RI, 1988.
16.
S. Iwata, A fully combinatorial algorithm for submodular function minimization, J. Combin. Theory Ser. B, 84 (2002), pp. 203–212.
17.
S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm for minimizing submodular functions, J. ACM, 48 (2001), pp. 761–777.
18.
P. Jipsen and H. Rose, Varieties of Lattices, Lecture Notes in Math. 1533, Springer-Verlag, Berlin, 1992.
19.
P. Jonsson, M. Klasson, and A. Krokhin, The approximability of three-valued MAX CSP, SIAM J. Comput., 35 (2006), pp. 1329–1349.
20.
A. Krokhin and B. Larose, Maximum Constraint Satisfaction on Diamonds, Technical report CS-RR-408, Department of Computer Science, University of Warwick, Warwick, UK, 2004.
21.
A. Krokhin and B. Larose, Supermodular Sublattices in Products of Relatively Complemented Lattices, manuscript, 2006.
22.
V. B. Lender, The groupoid of prevarieties of lattices, Siberian Math. J., 16 (1975), pp. 1214–1223 (in Russian).
23.
A. Müller and D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley Ser. Prob. Stat., Wiley & Sons, Chichester, UK, 2002.
24.
H. Narayanan, Submodular Functions and Electrical Networks, Ann. Discrete Math. 54, North-Holland, Amsterdam, 1997.
25.
S. D. Promislow and V. R. Young, Supermodular functions on finite lattices, Order, 22 (2005), pp. 389–413.
26.
A. Schrijver, A combinatorial algorithm minimizing submodular functions in polynomial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346–355.
27.
A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Vol. B, Matroids, Trees, Stable Sets, Springer-Verlag, Berlin, 2003.
28.
D. Topkis, Supermodularity and Complementarity, Frontiers Econom. Res., Princeton University Press, Princeton, NJ, 1998.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 312 - 328
ISSN (online): 1095-7146

History

Submitted: 11 September 2006
Accepted: 4 November 2007
Published online: 27 February 2008

MSC codes

  1. 90C27
  2. 68Q25
  3. 68T20

Keywords

  1. supermodular function
  2. lattices
  3. optimization
  4. tractability
  5. constraint satisfaction

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media