Abstract

Building upon earlier work by Golub, Meurant, Strakoš, and Tichý, we derive new a posteriori error bounds for Krylov subspace approximations to $f(A)b$, the action of a function f of a real symmetric or complex Hermitian matrix A on a vector b. To this purpose we assume that a rational function in partial fraction expansion form is used to approximate f, and the Krylov subspace approximations are obtained as linear combinations of Galerkin approximations to the individual terms in the partial fraction expansion. Our error estimates come at very low computational cost. In certain important special situations they can be shown to actually be lower bounds of the error. Our numerical results include experiments with the matrix exponential, as used in exponential integrators, and with the matrix sign function, as used in lattice quantum chromodynamics simulations, and demonstrate the accuracy of the estimates. The use of our error estimates within acceleration procedures is also discussed.

MSC codes

  1. 65F30
  2. 65F10
  3. 65F50

Keywords

  1. matrix functions
  2. partial fraction expansions
  3. error estimates
  4. error bounds
  5. Lanczos method
  6. Arnoldi method
  7. CG iteration

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
O. Axelsson and A. Kucherov, Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl., 7 (2000), pp. 197–218.
2.
G. A. Baker and P. Graves-Morris, Padé approximants, Encyclopedia of Mathematics and Its Applications, Vol. 59, Cambridge University Press, Cambridge, UK, 1996.
3.
A. Borici, A. Frommer, B. Joó, A. Kennedy, and B. Pendleton, QCD and numerical analysis III, in Proceedings of the Third International Workshop on Numerical Analysis and Lattice QCD, Edinburgh, UK, 2003, Lecture Notes in Comput. Sci. Engrg. 47, Springer, Berlin, 2005.
4.
D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Computable error bounds and estimates for the conjugate gradient method, Numer. Algorithms, 25 (2000), pp. 79–88.
5.
A. J. Carpenter, A. Ruttan, and R. S. Varga, Extended numerical computations on the $1/9$ conjecture in rational approximation theory, in Rational Approximation and Interpolation, P. R. Graves-Morris, E. B. Saff, and R. S. Varga, eds., Lecture Notes in Math. 1105, Springer-Verlag, Berlin, 1984, pp. 383–411.
6.
P. Castillo and Y. Saad, Preconditioning the matrix exponential operator with applications, J. Sci. Comput., 13 (1999), pp. 225–302.
7.
V. Druskin and L. Knizhnerman, Two polynomial methods of calculating functions of symmetric matrices, U.S.S.R. Comput. Math. Math. Phys., 29 (1989), pp. 112–121.
8.
V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.
9.
A. Frommer and V. Simoncini, Matrix functions, in Model Order Reduction: Theory, Research Aspects and Applications, W. H. A. Schilders and H. A. van der Vorst, eds., Mathematics in Industry, Springer, Heidelberg, 2008, to appear.
10.
G. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
11.
G. H. Golub and G. A. Meurant, Matrices, moments and quadrature, in Numerical Analysis 1993, D. Griffiths and G. Watson, eds., Pitman Res. Notes Math. 303, Longman Scientific and Technical, Harlow, UK, 1994, pp. 105–156.
12.
G. H. Golub and G. A. Meurant, Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods, BIT, 37 (1997), pp. 687–705.
13.
G. H. Golub and Z. Strakos, Estimates in quadratic formulas, Numer. Algorithms, 8 (1994), pp. 241–268.
14.
A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 535–551.
15.
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math. 31, Springer, Berlin, 2002.
16.
G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numer. Algorithms, 40 (2005), pp. 383–400.
17.
M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. National Bureau of Standards, 49 (1952), pp. 409–436.
18.
N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
19.
N. J. Higham, Factorizing complex symmetric matrices with positive definite real and imaginary parts, Math. Comput., 67 (1998), pp. 1591–1599.
20.
N. J. Higham and M. I. Smith, Computing the matrix cosine, Numer. Algorithms, 34 (2003), pp. 13–26.
21.
M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.
22.
M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math., 53 (2005), pp. 323–339.
23.
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1994.
24.
C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Appl. Math. 16, SIAM, Philadelphia, 1995.
25.
L. Lopez and V. Simoncini, Analysis of projection methods for rational function approximation to the matrix exponential, SIAM J. Numer. Anal., 44 (2006), pp. 613–635.
26.
The MathWorks, Inc., MATLAB 7, September, 2004.
27.
J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–162.
28.
G. Meurant, The computation of bounds for the norm of the error in the conjugate gradient algorithm, Numer. Algorithms, 16 (1997), pp. 77–87.
29.
G. Meurant, Estimates of the $l_2$ norm of the error in the conjugate gradient algorithm, Numer. Algorithms, 40 (2005), pp. 157–169.
30.
G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite precision arithmetic, in Acta Numer. 15, Cambridge University Press, Cambridge, UK, 2006, pp. 471–542.
31.
I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44 (2004), pp. 595–615.
32.
National Institute of Standards and Technology, Matrix Market.
33.
D. P. O'Leary, Z. Strakoš, and P. Tichý, On sensitivity of Gauß-Christoffel quadrature, Numer. Math., 107 (2007), pp. 147–174; available online at http://math.nist.gov/MatrixMarket/.
34.
C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–134.
35.
B. N. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear equations, Linear Algebra Appl., 29 (1980), pp. 323–346.
36.
P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge University Press, Cambridge, UK, 1987.
37.
M. Popolizio and V. Simoncini, Refined Acceleration Techniques for Approximating the Matrix Exponential Operator, Technical report, Dipartimento di Matematica, Università di Bologna, 2006.
38.
S. M. Rump, INTLAB—INTerval LABoratory, SIAM J. Matrix Anal. Appl., to appear.
39.
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1992), pp. 209–228.
40.
Y. Saad, Iterative Methods for Sparse Linear Systems, The PWS Publishing Company, Boston, 1996; 2nd ed., SIAM, Philadelphia, 2003.
41.
R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Software, 24 (1998), pp. 130–156.
42.
D. E. Stewart and T. S. Leyk, Error estimates for Krylov subspace approximations of matrix exponentials, J. Comput. Appl. Math., 72 (1996), pp. 359–369.
43.
Z. Strakoš and P. Tichý, On error estimation in the conjugate gradient method and why it works in finite precision computations, Electronic Trans. Numer. Anal., 13 (2002), pp. 56–80.
44.
Z. Strakoš and P. Tichý, Error estimation in preconditioned conjugate gradients, BIT, 45 (2005), pp. 789–817.
45.
J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. van der Vorst, Numerical methods for the QCD overlap operator. I: Sign-function and error bounds, Comput. Phys. Commun., 146 (2002), pp. 203–224.
46.
J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438–1457.
47.
J. van den Eshof and G. L. Sleijpen, Accurate conjugate gradient methods for families of shifted systems, Appl. Numer. Math., 49 (2004), pp. 17–37.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 1387 - 1412
ISSN (online): 1095-7197

History

Submitted: 7 March 2007
Accepted: 10 September 2007
Published online: 28 March 2008

MSC codes

  1. 65F30
  2. 65F10
  3. 65F50

Keywords

  1. matrix functions
  2. partial fraction expansions
  3. error estimates
  4. error bounds
  5. Lanczos method
  6. Arnoldi method
  7. CG iteration

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media