Abstract

We analyze discrete-time dynamical systems subjected to an additive noise and their deterministic limit. In this work, we will introduce a notion by which a discrete-time stochastic system has something like a Markov partition for deterministic systems. For a chosen class of noise profiles, the Frobenius–Perron (FP) operator associated to the noisy system is exactly represented by a stochastic transition matrix of a finite size K. This feature allows us to introduce for these stochastic systems a basis Markov partition, defined herein, irrespectively of whether the deterministic system possesses a Markov partition or not. We show that in the deterministic limit, corresponding to $K \to \infty$, the sequence of invariant measures of the noisy systems tends, in the weak sense, to the invariant measure of the deterministic system. Thus, by introducing a small additive noise one may approximate transition matrices and invariant measures of deterministic dynamical systems.

MSC codes

  1. 37H10
  2. 37A05
  3. 37M99
  4. 37A30
  5. 37A60
  6. 15A99
  7. 93E03

Keywords

  1. stochastic dynamics
  2. Markov partition
  3. Frobenius–Perron operator
  4. transition matrix

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998.
2.
C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, Cambridge University Press, Cambridge, UK, 1993.
3.
E. Bollt and J. Skufca, Markov partitions, in Encyclopedia of Nonlinear Science, A. Scott, ed., Routledge, New York, 2005, pp. 557–559.
4.
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, Berlin, 1975.
5.
A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Birkhäuser Boston, Boston, 1997.
6.
R. Fischer, Sofic systems and graphs, Monatsh. Math., 80 (1975), pp. 179–186.
7.
P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, UK, 1998.
8.
P. Góra, On small stochastic perturbations of mappings of the unit interval, Colloq. Math., 49 (1984), pp. 73–85.
9.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1991.
10.
A. Katok and B. Hasselblat, Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1995.
11.
G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math., 94 (1982), pp. 313–333.
12.
R. Z. Khasminskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theory Probab. Appl., 5 (1960), pp. 179–196.
13.
M. Khodas and S. Fishman, Relaxation and diffusion for the kicked rotor, Phys. Rev. Lett., 84 (2000), pp. 2837–2840.
14.
B. P. Kitchens, Symbolic Dynamics, One-Sided, Two-Sided and Countable State Markov Shifts, Springer-Verlag, New York, 1998.
15.
K. Krzyżewski, On connection between expanding mappings and Markov chains, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 19 (1971), pp. 291–293.
16.
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, 2nd ed., Springer-Verlag, New York, 1994.
17.
T.-Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture, J. Approximation Theory, 17 (1976), pp. 177–186.
18.
W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, New York, 1993.
19.
S. Nonnenmacher, Spectral properties of noisy classical and quantum propagators, Nonlinearity, 16 (2003), pp. 1685–1713.
20.
A. Ostruszka, Ch. Manderfeld, K. Życzkowski, and F. Haake, Quantization of classical maps with tunable Ruelle-Pollicott resonances, Phys. Rev. E (3), 68 (2003), 056201.
21.
A. Ostruszka, P. Pakoński, W. Słomczyński, and K. Życzkowski, Dynamical entropy for systems with stochastic perturbations, Phys. Rev. E (3), 62 (2000), pp. 2018–2029.
22.
A. Ostruszka and K. Życzkowski, Spectrum of Frobenius-Perron operator for systems with stochastic perturbation, Phys. Lett. A, 289 (2001), pp. 306–312.
23.
C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, 2nd ed., CRC Press, Boca Raton, FL, 1999.
24.
Ye. A. Sandler, A direct algorithm for imitation of Markov sequences, Engrg. Cybernetics, 11 (1973), pp. 355–358.
25.
Ja. G. Sinaı˘, Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen, 2 (1968), pp. 64–89 (in Russian).
26.
R. R. Tucci, Entanglement of Formation and Conditional Information Transmission, preprint, http://arxiv.org/abs/quant-ph/0010041 http://arxiv.org/abs/quant-ph/0010041, 2000.
27.
S. Ulam, Problems in Modern Mathematics, Interscience Publishers, New York, 1960.
28.
J. Weber, F. Haake, P. A. Braun, C. Manderfeld, and P. Šeba, Resonances of the Frobenius-Perron operator for a Hamiltonian map with a mixed phase space, J. Phys. A, 34 (2001), pp. 7195–7211.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 341 - 360
ISSN (online): 1536-0040

History

Submitted: 22 March 2007
Accepted: 4 January 2008
Published online: 23 April 2008

MSC codes

  1. 37H10
  2. 37A05
  3. 37M99
  4. 37A30
  5. 37A60
  6. 15A99
  7. 93E03

Keywords

  1. stochastic dynamics
  2. Markov partition
  3. Frobenius–Perron operator
  4. transition matrix

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media