Abstract

We offer a multiscale and averaging strategy to compute the solution of a singularly perturbed system when the fast dynamics oscillates rapidly; namely, the fast dynamics, rather than settling on a manifold of smaller order, forms cycle-like limits which advance along with the slow dynamics. We describe the limit as a Young measure with values being supported on the limit cycles, averaging with respect to which induces the equation for the slow dynamics. In particular, computing the tube of limit cycles establishes a good approximation for arbitrarily small singular parameters. Possible algorithms are displayed and concrete numerical examples are exhibited.

MSC codes

  1. 65L05
  2. 65P99
  3. 34C29
  4. 34D15

MSC codes

  1. singular perturbations
  2. limit cycles
  3. Young measures
  4. multiscale computation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
E.L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM, Philadelphia, 2003.
2.
Z. Artstein, On singularly perturbed ordinary differential equations with measure-valued limits, Math. Bohem., 127 (2002), pp. 139–152.
3.
Z. Artstein and M. Slemrod, The singular perturbation limit of an elastic structure in a rapidly flowing inviscid fluid, Quart. Appl. Math., 59 (2001), pp. 543–555.
4.
Z. Artstein and M. Slemrod, On singularly perturbed retarded functional differential equations, J. Differential Equations, 171 (2001), pp. 88–109.
5.
Z. Artstein and A. Vigodner, Singularly perturbed ordinary differential equations with dynamic limits, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), pp. 541–569.
6.
R. Ashino, M. Nagase, and R. Vaillancourt, Behind and beyond the MATLAB ODE suite, Comput. Math. Appl., 40 (2000), pp. 491–512.
7.
P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
8.
N.N. Bogoliubov and Y.A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, Hindustan, Delhi, 1961.
9.
R.N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., McGraw–Hill, Boston, 1986.
10.
A. Dhooge, W. Govaerts, and Yu.A. Kuznetsov, MATHCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), pp. 141–164.
11.
A. Dhooge, W. Govaerts, and Yu.A. Kuznetsov, Numerical continuation of fold bifurcation of limit cycles in MATCONT, in Computational Science—ICCS 2003. Part I, Lecture Notes in Comput. Sci. 2657, Springer, Berlin, 2003, pp. 701–710.
12.
E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu. A. Kuznetsov, B. Sandstede, and X.J. Wang, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations, Concordia University, Montreal QC, Canada, 1997–2000.
13.
E.H. Dowell and M. Ilgamov, Studies in Nonlinear Aeroelasticity, Springer-Verlag, New York, 1988.
14.
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, 2000.
15.
W.D. Iwan and R.D. Belvins, A model for vortex induced oscillation of structure, J. Appl. Mech., 41 (1974), pp. 581–586.
16.
Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd ed., Springer-Verlag, New York, 2004.
17.
Yu.A. Kuznetsov and V.V. Levitin, Content: Integrated Environment for Analysis of Dynamical Systems, CWI, Amsterdam, 1997.
18.
W.L. Miranker, Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel, Dordrecht, Boston, 1981.
19.
R.E. O'Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations, Springer-Verlag, New York, 1991.
20.
A.V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed., Prentice–Hall, Upper Saddle River, NJ, 1999.
21.
P. Pedregal, Optimization, relaxation and Young measures, Bull. Amer. Math. Soc. (N.S.), 36 (1999), pp. 27–58.
22.
L.S. Pontryagin and L.V. Rodygin, Approximate solution of a system of ordinary differential equations involving a small parameter in the derivatives, Dokl. Akad. Nauk SSSR, 131 (1960), pp. 255–258 (in Russian); Soviet Math. Dokl., 1 (1960), pp. 237–240 (in English).
23.
J.G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 3rd ed., Prentice–Hall, Upper Saddle River, NJ, 1996.
24.
J.A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York, 1985.
25.
L.F. Shampine and M.K. Gordon, Computer Solutions of Ordinary Differential Equations: The Initial Value Problem, W.H. Freeman, San Francisco, 1975.
26.
L.F. Shampine and M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18 (1997), pp. 1–22.
27.
D.R. Smith, Singular-Perturbation Theory, Cambridge University Press, Cambridge, UK, 1985.
28.
A.N. Tikhonov, A.B. Vasiléva, and A.G. Sveshnikov, Differential Equations, Springer-Verlag, Berlin, 1985.
29.
E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci., 1 (2003), pp. 385–391.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 1085 - 1097
ISSN (online): 1540-3467

History

Submitted: 2 April 2007
Accepted: 13 July 2007
Published online: 21 December 2007

MSC codes

  1. 65L05
  2. 65P99
  3. 34C29
  4. 34D15

MSC codes

  1. singular perturbations
  2. limit cycles
  3. Young measures
  4. multiscale computation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media