Abstract

We show how to exploit symmetries of a graph to efficiently compute the fastest mixing Markov chain on the graph (, find the transition probabilities on the edges to minimize the second-largest eigenvalue modulus of the transition probability matrix). Exploiting symmetry can lead to significant reduction in both the number of variables and the size of matrices in the corresponding semidefinite program, and thus enable numerical solution of large-scale instances that are otherwise computationally infeasible. We obtain analytic or semianalytic results for particular classes of graphs, such as edge-transitive and distance-transitive graphs. We describe two general approaches for symmetry exploitation, based on orbit theory and block-diagonalization, respectively, and establish a formal connection between them.

MSC codes

  1. 05C25
  2. 20C30
  3. 60J22
  4. 65F15
  5. 90C22
  6. 90C51

Keywords

  1. Markov chains
  2. fast mixing
  3. eigenvalue optimization
  4. semidefinite programming
  5. graph automorphism
  6. group representation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, UK, 1974.
2.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
3.
S. Boyd, P. Diaconis, and L. Xiao, Fastest mixing Markov chain on a graph, SIAM Rev., 46 (2004), pp. 667–689.
4.
S. Boyd, P. Diaconis, P. A. Parrilo, and L. Xiao, Symmetry analysis of reversible Markov chains, Internet Math., 2 (2005), pp. 31–71.
5.
S. Boyd, P. Diaconis, P. A. Parrilo, and L. Xiao, Fastest Mixing Markov Chain on Graphs with Symmetries, Tech. Report MSR-TR-2007-52, Microsoft Research, Redmond, VA, 2007.
6.
S. Boyd, P. Diaconis, J. Sun, and L. Xiao, Fastest mixing Markov chain on a path, Amer. Math. Monthly, 113 (2006), pp. 70–74.
7.
S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE Trans. Inform. Theory, 52 (2006), pp. 2508–2530.
8.
P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues, Texts Appl. Math. 31, Springer-Verlag, Berlin, Heidelberg, 1999.
9.
A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
10.
S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Math. Program., 95 (2003), pp. 329–357.
11.
F. Chen, L. Lovász, and I. Pak, Lifting Markov chains to speed up mixing, in Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 275–281.
12.
F. R. K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, AMS, Providence, RI, 1997.
13.
R. Cogill, S. Lall, and P. A. Parrilo, Structured semidefinite programs for the control of symmetric systems, Automatica, 44 (2008), pp. 1411–1417.
14.
E. de Klerk, D. V. Pasechnik, and A. Schrijver, Reduction of symmetric semidefinite programs using the regular $*$-representation, Math. Program., 109 (2007), pp. 613–624.
15.
P. Diaconis, Group Representations in Probability and Statistics, IMS, Hayward, CA, 1988.
16.
P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Ann. Appl. Probab., 3 (1993), pp. 696–730.
17.
P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab., 6 (1996), pp. 695–750.
18.
P. Diaconis and L. Saloff-Coste, Separation cut-offs for birth and death chains, Ann. Appl. Probab., 16 (2006), pp. 2098–2122.
19.
P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab., 1 (1991), pp. 36–61.
20.
I. Dukanovic and F. Rendl, Semidefinite programming relaxations for graph coloring and maximal clique problems, Math. Program., 109 (2007), pp. 345–365.
21.
P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar., 14 (1963), pp. 295–315.
22.
A. Fässler and E. Stiefel, Group Theoretical Methods and Their Applications, Birkhäuser, Boston, 1992.
23.
K. K. Gade and M. L. Overton, Optimizing the asymptotic convergence rate of the Diaconis-Holmes-Neal sampler, Adv. in Appl. Math., 38 (2007), pp. 382–403.
24.
The Gap group, GAP: Groups, Algorithms, Programming. A System for Computational Discrete Algebra, version 4.4.6, 2005. http://www.gap-system.org.
25.
K. Gatermann, Computer Algebra Methods for Equivariant Dynamical Systems, Lecture Notes in Math. 1728, Springer-Verlag, Berlin, 2000.
26.
K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192 (2004), pp. 95–128.
27.
A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice–Hall, Englewood Cliffs, NJ, 1981.
28.
C. Godsil and G. Royle, Algebraic Graph Theory, Grad. Texts in Math. 207, Springer-Verlag, New York, 2001.
29.
M. X. Goemans, Semidefinite programming in combinatorial optimization, Math. Programming, 79 (1997), pp. 143–161.
30.
G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
31.
M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory II, Appl. Math. Sci. 69, Springer-Verlag, New York, 1988.
32.
A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwoods Ltd., Chichester, UK, 1981.
33.
L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in Dirichlet Forms, Lecture Notes in Math. 1563, Springer-Verlag, Berlin, 1993, pp. 54–88.
34.
B. Han, M. L. Overton, and T. P.-Y. Yu, Design of Hermite subdivision schemes aided by spectral radius optimization, SIAM J. Sci. Comput, 25 (2003), pp. 643–656.
35.
C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM J. Optim., 10 (2000), pp. 673–696.
36.
Y. Kanno, M. Ohsaki, K. Murota, and N. Katoh, Group symmetry in interior-point methods for semidefinite programming, Optim. Eng., 2 (2001), pp. 293–320.
37.
M. Laurent, Strengthened semidefinite programming bounds for codes, Math. Program., 109 (2007), pp. 239–261.
38.
Z. Lu, A. Nemirovski, and R. D. C. Monteiro, Large-scale semidefinite programming via saddle point mirror-prox algorithm, Math. Program., 109 (2007), pp. 211–237.
39.
F. Margot, Exploiting orbits in symmetric ILP, Math. Program., 98 (2003), pp. 3–21.
40.
J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd ed., Texts Appl. Math. 17, Springer-Verlag, New York, 1999.
41.
B. McKay, nauty User's guide (Version $2.2$), Australian National University, 2003. Available online from http://cs.anu.edu.au/~bdm/nauty/.
42.
R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl., 197 (1994), pp. 143–176.
43.
B. Mohar, Some applications of Laplace eigenvalues of graphs, in Graph Symmetry: Algebraic Methods and Applications, G. Hahn and G. Sabidussi, eds., NATO Sci. Ser. C Math. Phys. Sci. 497, Kluwer Academic, Dordrecht, The Netherlands, 1997, pp. 225–275.
44.
B. Mohar and S. Poljak, Eigenvalues in combinatorial optimization, in Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland, and V. Klee, eds., IMA Vol. Math. Appl. 50, Springer-Verlag, New York, 1993, pp. 107–151.
45.
A. Nemirovski, Prox-method with rate of convergence $O(1/t)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems, SIAM J. Optim., 15 (2004), pp. 229–251.
46.
Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), pp. 127–152.
47.
M. L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optim., 2 (1992), pp. 88–120.
48.
P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, Ph.D. thesis, California Institute of Technology, Pasadena, CA, 2000.
49.
P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program., 96 (2003), pp. 293–320.
50.
P. A. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Algorithmic and Quantitative Real Algebraic Geometry, S. Basu and L. Gonzalez-Vega, eds., DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60, AMS, Providence, RI, 2003, pp. 83–99.
51.
S. Roch, Bounding fastest mixing, Electron. Comm. Probab., 10 (2005), pp. 282–296.
52.
Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, UK, 1992.
53.
J. Saltzman, A Generalization of Spectral Analysis for Discrete Data Using Markov Chains, Ph.D. thesis, Department of Statistics, Stanford University, Stanford, CA, 2006.
54.
J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
55.
D. Stroock, Logarithmic Sobolev inequalities for Gibbs states, in Dirichlet Forms, Lecture Notes in Math. 1563, Springer-Verlag, Berlin, 1993, pp. 194–228.
56.
R. Subramanian and I. D. Scherson, An analysis of diffusive load-balancing, in Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms and Architectures, 1994, pp. 220–225.
57.
P. Worfolk, Zeros of equivariant vector fields: Algorithms for an invariant approach, J. Symbolic Comput., 17 (1994), pp. 487–511.
58.
L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems Control Lett., 53 (2004), pp. 65–78.
59.
L. Xiao, S. Boyd, and S.-J. Kim, Distributed average consensus with least-mean-square deviation, J. Parallel Distrib. Comput., 67 (2007), pp. 33–46.

Information & Authors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization
Pages: 792 - 819
ISSN (online): 1095-7189

History

Submitted: 24 April 2007
Accepted: 31 March 2009
Published online: 17 June 2009

MSC codes

  1. 05C25
  2. 20C30
  3. 60J22
  4. 65F15
  5. 90C22
  6. 90C51

Keywords

  1. Markov chains
  2. fast mixing
  3. eigenvalue optimization
  4. semidefinite programming
  5. graph automorphism
  6. group representation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media