A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints

In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error estimates of optimal order with respect to both space and time discretization parameters. The paper is divided into two parts. In the first part we develop some stability and error estimates for space-time discretization of the state equation and provide error estimates for optimal control problems without control constraints. In the second part of the paper, the techniques and results of the first part are used to develop a priori error analysis for optimal control problems with pointwise inequality constraints on the control variable.

  • [1]  N. Arada, E. Casas and , and F. Tröltzsch, Error estimates for a semilinear elliptic optimal control problem, Comput. Optim. Appl., 23 (2002), pp. 201–229. CPPPEF 0926-6003 CrossrefISIGoogle Scholar

  • [2]  R. Becker, D. Meidner and , and B. Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods, Optim. Methods Softw., 22 (2007), pp. 813–833. OMSOE2 1055-6788 CrossrefISIGoogle Scholar

  • [3]  J. H. Bramble and  and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7 (1970), pp. 112–124. SJNAAM 0036-1429 LinkISIGoogle Scholar

  • [4]  E. Casas, M. Mateos and , and F. Tröltzsch, Error estimates for the numerical approximation of boundary semilinear elliptic control problems, Comput. Optim. Appl., 31 (2005), pp. 193–220. CPPPEF 0926-6003 CrossrefISIGoogle Scholar

  • [5]  Google Scholar

  • [6]  Google Scholar

  • [7]  Google Scholar

  • [8]  K. Eriksson and  and C. Johnson, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77. SJNAAM 0036-1429 LinkISIGoogle Scholar

  • [9]  K. Eriksson and  and C. Johnson, Adaptive finite element methods for parabolic problems II: Optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM J. Numer. Anal., 32 (1995), pp. 706–740. SJNAAM 0036-1429 LinkISIGoogle Scholar

  • [10]  K. Eriksson, C. Johnson and , and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, M2AN Math. Model. Numer. Anal., 19 (1985), pp. 611–643. CrossrefISIGoogle Scholar

  • [11]  Google Scholar

  • [12]  R. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 28–47. JMANAK 0022-247X CrossrefISIGoogle Scholar

  • [13]  Google Scholar

  • [14]  Google Scholar

  • [15]  T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, M2AN Math. Model. Numer. Anal., 13 (1979), pp. 313–328. Google Scholar

  • [16]  M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45–61. CPPPEF 0926-6003 CrossrefISIGoogle Scholar

  • [17]  I. Lasiecka and  and K. Malanowski, On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems, Control Cybern., 7 (1978), pp. 21–36. CCYBAP 0324-8569 Google Scholar

  • [18]  Google Scholar

  • [19]  K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. Math. Optim., 8 (1981), pp. 69–95. AMOMBN 0095-4616 CrossrefISIGoogle Scholar

  • [20]  R. S. McNight and  and W. E. Bosarge, The Ritz–Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 11 (1973), pp. 510–524. SJCODC 0363-0129 LinkISIGoogle Scholar

  • [21]  D. Meidner and  and B. Vexler, Adaptive space-time finite element methods for parabolic optimization problems, SIAM J. Control Optim., 46 (2007), pp. 116–142. SJCODC 0363-0129 LinkISIGoogle Scholar

  • [22]  C. Meyer and  and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), pp. 970–985. SJCODC 0363-0129 LinkISIGoogle Scholar

  • [23]  Google Scholar

  • [24]  A. Rösch, Error estimates for parabolic optimal control problems with control constraints, Z. Anal. Anwendungen, 23 (2004), pp. 353–376. CrossrefISIGoogle Scholar

  • [25]  M. Schmich and  and B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., 30 (2008), pp. 369–393. SJOCE3 1064-8275 LinkISIGoogle Scholar

  • [26]  Google Scholar

  • [27]  Google Scholar

  • [28]  R. Winther, Error estimates for a Galerkin approximation of a parabolic control problem, Ann. Math. Pura Appl. (4), 117 (1978), pp. 173–206. CrossrefGoogle Scholar

  • [29]  Google Scholar