A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

Abstract

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [SIAM J. Control Optim., 47 (2008), pp. 1150–1177] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the control variable. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For the treatment of the control discretization we discuss different approaches, extending techniques known from the elliptic case.

MSC codes

  1. 49N10
  2. 49M25
  3. 65M15
  4. 65M60

Keywords

  1. optimal control
  2. parabolic equations
  3. error estimates
  4. finite elements
  5. pointwise inequality constraints

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Arada, E. Casas, and F. Tröltzsch, Error estimates for a semilinear elliptic optimal control problem, Comput. Optim. Appl., 23 (2002), pp. 201–229.
2.
R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math., 106 (2007), pp. 349–367.
3.
M. Bergounioux, K. Ito, and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37 (1999), pp. 1176–1194.
4.
E. Casas, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems, Adv. Comput. Math., 26 (2007), pp. 137–153.
5.
E. Casas and M. Mateos, Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Continuous piecewise linear approximations, in Systems, Control, Modeling and Optimization, IFIP Int. Fed. Inf. Process. 202, Springer, New York, 2006, pp. 91–101.
6.
E. Casas and M. Mateos, Error estimates for the numerical approximation of Neumann control problems, Comput. Optim. Appl., 2007, published electronically.
7.
E. Casas, M. Mateos, and F. Tröltzsch, Error estimates for the numerical approximation of boundary semilinear elliptic control problems, Comput. Optim. Appl., 31 (2005), pp. 193–220.
8.
E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in Analysis and Optimization of Differential Systems, V. Barbu, I. Lasiecka, D. Tiba, and C. Varsan, eds., Kluwer Academic Publishers, Boston, 2003, pp. 89–100.
9.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math., 40, SIAM, Philadelphia, 2002.
10.
R. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 28–47.
11.
GASCOIGNE: The Finite Element Toolkit, http://www.gascoigne.uni-hd.de/.
12.
T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, M2AN Math. Model. Numer. Anal., 13 (1979), pp. 313–328.
13.
M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45–61.
14.
K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained optimal control problems, SIAM J. Optim., 13 (2002), pp. 321–334.
15.
I. Lasiecka and K. Malanowski, On regularity of solutions to convex optimal control problems with control constraints for parabolic systems, Control Cybern., 6 (1977), pp. 57–74.
16.
I. Lasiecka and K. Malanowski, On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems, Control Cybern., 7 (1978), pp. 21–36.
17.
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss., 170, Springer, Berlin, 1971.
18.
K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. Math. Optim., 8 (1981), pp. 69–95.
19.
R. S. McNight and W. E. Bosarge Jr., The Ritz–Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 11 (1973), pp. 510–524.
20.
D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints, SIAM J. Control Optim., 47 (2008), pp. 1150–1177.
21.
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), pp. 970–985.
22.
RoDoBo: A C++ Library for Optimization with Stationary and Nonstationary PDEs, http://rodobo.uni-hd.de/.
23.
A. Rösch, Error estimates for parabolic optimal control problems with control constraints, Z. Anal. Anwendungen, 23 (2004), pp. 353–376.
24.
A. Rösch, Error estimates for linear-quadratic control problems with control constraints, Optim. Methods Softw., 21 (2006), pp. 121–134.
25.
A. Rösch and B. Vexler, Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing, SIAM J. Numer. Anal., 44 (2006), pp. 1903–1920.
26.
M. Schmich and B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM J. Sci. Comput., 30 (2008), pp. 369–393.
27.
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Ser. Comput. Math., 25, Springer-Verlag, Berlin, 1997.
28.
R. Winther, Error estimates for a Galerkin approximation of a parabolic control problem, Ann. Math. Pura Appl. (4), 117 (1978), pp. 173–206.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 1301 - 1329
ISSN (online): 1095-7138

History

Submitted: 8 June 2007
Accepted: 27 November 2007
Published online: 21 March 2008

MSC codes

  1. 49N10
  2. 49M25
  3. 65M15
  4. 65M60

Keywords

  1. optimal control
  2. parabolic equations
  3. error estimates
  4. finite elements
  5. pointwise inequality constraints

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.