Mathematical Analysis of Unsteady Flows of Fluids with Pressure, Shear-Rate, and Temperature Dependent Material Moduli that Slip at Solid Boundaries

Abstract

In Bridgman's treatise [The Physics of High Pressures, MacMillan, New York, 1931], he carefully documented that the viscosity and the thermal conductivity of most liquids depend on the pressure and the temperature. The relevant experimental studies show that even at high pressures the variations of the values in the density are insignificant in comparison to that of the viscosity, and it is thus reasonable to assume that the liquids in question are incompressible fluids with pressure dependent viscosities. We rigorously investigate the mathematical properties of unsteady three-dimensional internal flows of such incompressible fluids. The model is expressed through a system of partial differential equations representing the balance of mass, the balance of linear momentum, the balance of energy, and the equation for the entropy production. Assuming that we have Navier's slip at the impermeable boundary we establish the long-time existence of a (suitable) weak solution when the data are large.

MSC codes

  1. 35Q30
  2. 35Q72
  3. 76D03
  4. 76A05

Keywords

  1. generalized Navier–Stokes–Fourier system
  2. incompressible fluid
  3. pressure-dependent viscosity
  4. shear-dependent viscosity
  5. temperature-dependent viscosity
  6. unsteady flows
  7. weak solution
  8. suitable weak solution
  9. existence result for large data
  10. Navier's slip boundary condition

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. Andrade, Viscosity of liquids, Nature, 125 (1930), pp. 309–310.
2.
S. Bair, A more complete description of the shear rheology of high-temperature, high-shear journal bearing lubrication, Tribology Transactions, 49 (2006), pp. 39–45.
3.
S. Bair and P. Kottke, Pressure-viscosity relationships for elastohydrodynamics, Tribology Transactions, 46 (2003), pp. 289–295.
4.
S. Bair and W. O. Winer, The high pressure high shear stress rheology of liquid lubricants, J. Tribology, 114 (1992), pp. 1–13.
5.
J. Baranger and A. Mikelić, Stationary solutions to a quasi-Newtonian flow with viscous heating, Math. Models Methods Appl. Sci., 5 (1995), pp. 725–738.
6.
C. Barus, Isothermals, isopiestics and isometrics relative to viscosity, American J. Sci., 45 (1893), pp. 87–96.
7.
J. T. Bendler, J. J. Fontanella, and M. F. Schlessinger, A new Vogel-like law: Ionic conductivity, dialectric relaxation and viscosity near the glass transition, Phys. Rev. Lett., 87 (2001), p. 1955.
8.
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer-Verlag, Berlin, 1976.
9.
L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), pp. 581–597.
10.
P. W. Bridgman, The Physics of High Pressure, MacMillan, New York, 1931.
11.
M. Bulíček, E. Feireisl, and J. Málek, Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl., 10 (2009), pp. 992–1015.
12.
M. Bulíček, J. Málek, and D. Pražák, On the dimension of the attractor for a class of fluids with pressure dependent viscosities, Commun. Pure Appl. Anal., 4 (2005), pp. 805–822.
13.
M. Bulíček, J. Málek, and K. R. Rajagopal, Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), pp. 51–86.
14.
M. Bulíček, J. Málek, and K. R. Rajagopal, Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu(p,\cdot)\to \infty$ as $p\to \infty$, Czechoslovak Math. J., 59, in press.
15.
L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), pp. 771–831.
16.
H. Callen, Thermodynamics and an Introduction to Thermostatics, John Wiley and Sons, London, 1985.
17.
T. Clopeau and A. Mikelić, Nonstationary flows with viscous heating effects, in Élasticité, viscoélasticité et contrôle optimal (Lyon, 1995), ESAIM Proc., 2, Soc. Math. Appl. Indust., Paris, 1997, pp. 55–63.
18.
L. Consiglieri, Weak solutions for a class of non-Newtonian fluids with energy transfer, J. Math. Fluid Mech., 2 (2000), pp. 267–293.
19.
W. G. Cutler, R. H. McMickle, W. Webb, and R. W. Schiessler, Study of the compressions of several high molecular weight hydrocarbons, J. Chem. Phys., 29 (1958), pp. 727–740.
20.
L. Diening, J. Málek, and M. Steinhauer, On Lipschitz truncation of Sobolev functions (with variable exponent) and their selected application, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 211–232.
21.
L. Diening, M. Růžička, and J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, preprint, Mathematical Institute of University of Freiburg, Freiburg, Germany, 2009.
22.
D. Dowson and G. R. Higginson, Elastohydrodynamic Lubrication, the Fundamentals of Roller and Gear Lubrication, Pergamon, Oxford, UK, 1966.
23.
E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. App. 26, Oxford University Press, Oxford, UK, 2004.
24.
E. Feireisl and J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech., Art. ID 90616, 2006, 14 pp.
25.
M. Franta, J.Málek, and K. R. Rajagopal, On steady flows of fluids with pressure-and shear-dependent viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 651–670.
26.
J. Frehse and J. Málek, Problems due to the no-slip boundary in incompressible fluid dynamics, in Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, pp. 559–571.
27.
J. Frehse, J. Málek, and M. Steinhauer, On existence results for fluids with shear dependent viscosity—unsteady flows, in Partial Differential Equations (Praha, 1998), Chapman & Hall/CRC Res. Notes Math. 406, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 121–129.
28.
F. Gazzola, A note on the evolution of Navier-Stokes equations with a pressure-dependent viscosity, Z. Angew. Math. Phys., 48 (1997), pp. 760–773.
29.
F. Gazzola and P. Secchi, Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity, in Navier-Stokes Equations: Theory and Numerical Methods, R. Salvi, ed., Pitman Res. Notes Math. Ser. 388, Longman, Harlow, UK, 1998, pp. 31–37.
30.
E. M. Griest, W. Webb, and R. W. Schiessler, Effect of pressure on viscosity of higher hydrocarbons and their mixtures, J. Chem. Phys., 29 (1958), pp. 711–720.
31.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman (Advanced Publishing Program), Boston, 1985.
32.
J. Hron, J. Málek, J. Nečas, and K. R. Rajagopal, Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities, Math. Comput. Simulation, 61 (2003), pp. 297–315.
33.
J. Hron, J. Malek, V. Prusa, and K. R. Rajagopal, Simple flows of fluids with pressure dependent viscosities, further remarks, in preparation.
34.
J. Hron, J. Málek, and K. R. Rajagopal, Simple flows of fluids with pressure dependent viscosities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457 (2001), pp. 1603–1622.
35.
J. B. Irwing and A. J. Barlow, An automatic high pressure viscometer, J. Phys. E, 4 (1971), pp. 232–236.
36.
K. L. Johnson and R. Cameron, Shear behaviour of elastohydrodynamic oil films at high rolling contact pressures, Proc. Instn. Mech. Engrs., 182 (1967), pp. 307–319.
37.
K. L. Johnson and J. A. Greenwood, Thermal analysis of an Eyring fluid in elastohydrodynamic traction, Wear, 61 (1980), pp. 355–374.
38.
K. L. Johnson and J. L. Tevaarwerk, Shear behaviour of elastohydrodynamic oil films, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 356 (1977), pp. 215–236.
39.
V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, AMS, Providence, RI, 1997.
40.
J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities, Ann. Hist. H. Poincaré Anal. Non Linéaire, 24 (2007), pp. 413–441.
41.
R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal., 28 (1997), pp. 393–417.
42.
P. L. Lions, Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Ser. Math. Appl. 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.
43.
J. Málek, J. Nečas, and K. R. Rajagopal, Global analysis of the flows of fluids with pressure-dependent viscosities, Arch. Ration. Mech. Anal., 165 (2002), pp. 243–269.
44.
J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London, 1996.
45.
J. Málek and K. R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, in Evolutionary Equations. Vol. II, Handb. Differ. Equ., Elsevier/North–Holland, Amsterdam, 2005, pp. 371–459.
46.
J. Málek and K. R. Rajagopal, Mathematical properties of the equations governing the flow of fluids with pressure and shear rate dependent viscosities, in Handbook of Mathematical Fluid Dynamics, Vol. 4, Elsevier B. V., Amsterdam, 2007, pp. 407–444.
47.
V. G. Maz'ya and J. Rossmann, Weighted $L_p$ estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Zamm. Z. Angew. Math. Mech., 83 (2003), pp. 435–467.
48.
J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids, Math. Methods Appl. Sci., 29 (2006), pp. 1883–1906.
49.
J. Nečas, Sur les normes équivalentes dans $W^k_p (\Omega)$ et sur la coercivité des formes formellement positives, in Séminaire Equations aux Dérivées Partielles, Les Presses de l'Université, Montréal, 1966, pp. 102–128.
50.
M. Paluch, Z. Dendzik, and S. J. Rzoska, Scaling of high-pressure viscosity data in low molecular-weight glass-forming liquids, Phys. Rev. B, 60 (1999), pp. 2979–2982.
51.
S. C. Prasad and K. R. Rajagopal, Flow of a fluid with pressure dependent viscosity due to a boundary that is being stretched, Appl. Math. Comput., 173 (2006), pp. 50–68.
52.
K. R. Rajagopal and A. Z. Szeri, On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication, R. Soc. Lond. Proc. Ser. Math. A Phys. Eng. Sci., 459 (2003), pp. 2771–2786.
53.
M. Renardy, Some remarks on the Navier-Stokes equations with a pressure-dependent viscosity, Comm. Partial Differential Equations, 11 (1986), pp. 779–793.
54.
C. J. A. Roelands, Correlation Aspects of the Viscosity-Temeperature-Pressure Relationship of Lubricating Oils, Ph.D. thesis, Technische Hogeschool Delft, The Netherlands, 1966.
55.
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65–96.
56.
G. G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge Phil. Soc., 8 (1845), pp. 287–305.
57.
S. A. Suslov and T. D. Tran, Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid, J. Non-Newton. Fluid Mech., 154 (2008), pp. 170–178.
58.
A. Z. Szeri, Fluid Film Lubrication: Theory and Design, Cambridge University Press, Cambridge, UK, 1998.
59.
M. Vasudevaiah and K. R. Rajagopal, On fully developed flows of fluids with a pressure dependent viscosity in a pipe, Appl. Math., 50 (2005), pp. 341–353.
60.
H. Vogel, Die Bedeutung der Temperatur Abhangigkeit der Viscosität f.d. Beurteilung von Oelen, Zeit. Angew. Chem., 35 (1922), pp. 561–563.
61.
E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Nonlinear Monotone Operators, Springer-Verlag, New York, 1990, pp. i–xvi and 469–1202 (translated from the German by the author and Leo F. Boron).

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 665 - 707
ISSN (online): 1095-7154

History

Submitted: 25 June 2007
Accepted: 26 November 2008
Published online: 12 June 2009

MSC codes

  1. 35Q30
  2. 35Q72
  3. 76D03
  4. 76A05

Keywords

  1. generalized Navier–Stokes–Fourier system
  2. incompressible fluid
  3. pressure-dependent viscosity
  4. shear-dependent viscosity
  5. temperature-dependent viscosity
  6. unsteady flows
  7. weak solution
  8. suitable weak solution
  9. existence result for large data
  10. Navier's slip boundary condition

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.