Abstract

This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement by the computation of a moving shock wave. Mean system behavior and second moment statistics of our simulations match theoretical values and benchmarks well. We find that particular attention should be paid to the spectrum of the flux at the interface between the particle and continuum methods, specifically for the nonhydrodynamic (kinetic) time scales.

MSC codes

  1. 65C30
  2. 60H35
  3. 76M12
  4. 76M28

Keywords

  1. stochastic Navier–Stokes equations
  2. multiscale hybrid algorithm
  3. computational fluid dynamics
  4. direct simulation Monte Carlo
  5. adaptive mesh refinement

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. J. Alexander and A. L. Garcia, The direct simulation Monte Carlo method, Computers in Physics, 11 (1997), pp. 588–593.
2.
F. J. Alexander, A. L. Garcia, and D. M. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys., 182 (2002), pp. 47–66.
3.
F. J. Alexander, A. L. Garcia, and D. M. Tartakovsky, Algorithm refinement for stochastic partial differential equations: II. Correlated systems, J. Comput. Phys., 207 (2005), pp. 769–787.
4.
H. Alsmeyer, Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam, J. Fluid Mech., 74 (1976), pp. 497–513.
5.
J. B. Bell, M. Berger, J. Saltzman, and M. Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation law, SIAM J. Sci. Comput., 15 (1994), pp. 127–138.
6.
J. B. Bell, J. Foo, and A. Garcia, Algorithm refinement for the stochastic Burgers' equation, J. Comput. Phys., 223 (2007), pp. 451–468.
7.
J. B. Bell, A. L. Garcia, and S. A. Williams, Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations, Phys. Rev. E (3), 76 (2007), 016708.
8.
M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82 (1989), pp. 64–84.
9.
M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53 (1984), pp. 484–512.
10.
D. Beysens, Y. Garrabos, and G. Zalczer, Experimental evidence for Brillouin asymmetry induced by a temperature gradient, Phys. Rev. Lett., 45 (1980), pp. 403–406.
11.
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, UK, 1994.
12.
M. Bixon and R. Zwanzig, Boltzmann-Langevin equation and hydrodynamic fluctuations, Phys. Rev., 187 (1969), pp. 267–272.
13.
E. Calzetta, Relativistic fluctuating hydrodynamics, Classical Quantum Gravity, 15 (1998), pp. 653–667.
14.
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, UK, 1991.
15.
J. M. Ortiz de Zarate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures, Elsevier Science, Amsterdam, 2007.
16.
R. Delgado-Buscalioni and P. V. Coveney, Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow, Phys. Rev. E (3), 67 (2003), 046704.
17.
R. Delgado-Buscalioni and G. De Fabritiis, Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids, Phys. Rev. E (3), 76 (2007), 036709.
18.
C. Van den Broeck, R. Kawai, and P. Meurs, Exorcising a Maxwell demon, Phys. Rev. Lett., 93 (2004), 090601.
19.
A. Donev, A. L. Garcia, and B. J. Alder, Stochastic event-driven molecular dynamics, J. Comput. Phys., 227 (2007), pp. 2644–2665.
20.
J. Eggers, Dynamics of liquid nanojets, Phys. Rev. Lett., 89 (2002), 084502.
21.
R. F. Fox and G. E. Uhlenbeck, Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations, Phys. Fluids, 13 (1970), pp. 1893–1902.
22.
A. L. Garcia, Nonequilibrium fluctuations studied by a rarefied gas simulation, Phys. Rev. A, 34 (1986), pp. 1454–1457.
23.
A. L. Garcia, Numerical Methods for Physics, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 2000.
24.
A. L. Garcia, Estimating hydrodynamic quantities in the presence of microscopic fluctuations, Commun. Appl. Math. Comput. Sci., 1 (2006), pp. 53–78.
25.
A. L. Garcia and B. J. Alder, Generation of the Chapman-Enskog distribution, J. Comput. Phys., 140 (1998), pp. 66–70.
26.
A. L. Garcia, J. B. Bell, W. Y. Crutchfield, and B. J. Alder, Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comput. Phys., 154 (1999), pp. 134–155.
27.
A. L. Garcia, M. Malek-Mansour, G. Lie, and E. Clementi, Numerical integration of the fluctuating hydrodynamic equations, J. Statist. Phys., 47 (1987), p. 209.
28.
A. L. Garcia, M. Malek-Mansour, G. C. Lie, M. Mareschal, and E. Clementi, Hydrodynamic fluctuations in a dilute gas under shear, Phys. Rev. A, 36 (1987), pp. 4348–4355.
29.
A. L. Garcia and C. Penland, Fluctuating hydrodynamics and principal oscillation pattern analysis, J. Statist. Phys., 64 (1991), pp. 1121–1132.
30.
G. Giupponi, G. De Fabritiis, and P. V. Coveney, Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules, J. Chemical Physics, 126 (2007), 154903.
31.
S. Gottleib and C. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp., 67 (1998), pp. 73–85.
32.
N. G. Hadjiconstantinou, Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics, Bull. Polish Acad. Sci. Tech. Sci., 53 (2005), pp. 335–342.
33.
R. D. Astumian and P. Hanggi, Brownian motors, Physics Today, 55 (2002), pp. 33–39.
34.
M. Kac, Foundations of kinetic theory, in Proceedings of the 3rd Berkeley Symposium on Math. Statist. Probab. Vol. 3, J. Neyman, ed., University of California Press, Berkeley, CA, 1954, pp. 171–197.
35.
K. Kadau, T. C. Germann, N. G. Hadjiconstantinou, P. S. Lomdahl, G. Dimonte, B. L. Holian, and B. J. Alder, Nanohydrodynamics simulations: An atomistic view of the Rayleigh-Taylor instability, Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 5851–5855.
36.
K. Kadau, C. Rosenblatt, J. L. Barber, T. C. Germann, Z. Huang, P. Carls, and B. J. Alder, The importance of fluctuations in fluid mixing, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 7741–7745.
37.
W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments, Phys. Rev. Lett., 98 (2007), 064504.
38.
G. E. Kelly and M. B. Lewis, Hydrodynamic fluctuations, Phys. Fluids, 14 (1971), pp. 1925–1931.
39.
V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A. Zabelok, Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys., 223 (2007), pp. 589–608.
40.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics 6, Pergamon, London, 1959.
41.
A. Lemarchand and B. Nowakowski, Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system, Molecular Simulation, 30 (2004), pp. 773–780.
42.
M. Malek-Mansour, A. L. Garcia, G. C. Lie, and E. Clementi, Fluctuating hydrodynamics in a dilute gas, Phys. Rev. Lett., 58 (1987), pp. 874–877.
43.
M. Malek-Mansour, A. L. Garcia, J. W. Turner, and M. Mareschal, On the scattering function of simple fluids in finite systems, J. Statist. Phys., 52 (1988), pp. 295–309.
44.
M. Mareschal, M. Malek-Mansour, G. Sonnino, and E. Kestemont, Dynamic structure factor in a nonequilibrium fluid: A molecular-dynamics approach, Phys. Rev. A, 45 (1992), pp. 7180–7183.
45.
P. Meurs, C. Van den Broeck, and A. L. Garcia, Rectification of thermal fluctuations in ideal gases, Phys. Rev. E (3), 70 (2004), 051109.
46.
E. Moro, Hybrid method for simulating front propagation in reaction-diffusion systems, Phys. Rev. E (3), 69 (2004), 060101.
47.
M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science, 289 (2000), pp. 1165–1169.
48.
P. Espanol, Stochastic differential equations for non-linear hydrodynamics, Phys. A, 248 (1998), pp. 77–96.
49.
B. Nowakowski and A. Lemarchand, Sensitivity of explosion to departure from partial equilibrium, Phys. Rev. E, 68 (2003), 031105.
50.
G. Oster, Brownian ratchets: Darwin's motors, Nature, 417 (2002), p. 25.
51.
J. Qiu and C.-W. Shu, Runge–Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26 (2005), pp. 907–929.
52.
R. Schmitz, Fluctuations in nonequilibrium fluids, Phys. Rep., 171 (1988), pp. 1–58.
53.
T. E. Schwarzentruber, L. C. Scalabrin, and I. D. Boyd, A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows, J. Comput. Phys., 225 (2007), pp. 1159–1174.
54.
W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation, J. Statist. Phys., 66 (1992), pp. 1011–1044.
55.
H. S. Wijesinghe and N. G. Hadjiconstantinou, Discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics, Internat. J. Multiscale Computational Engineering, 2 (2004), pp. 189–202.
56.
H. S. Wijesinghe, R. Hornung, A. L. Garcia, and N. G. Hadjiconstantinou, Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics, J. Fluids Eng., 126 (2004), pp. 768–777.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 1256 - 1280
ISSN (online): 1540-3467

History

Submitted: 3 July 2007
Accepted: 24 October 2007
Published online: 1 February 2008

MSC codes

  1. 65C30
  2. 60H35
  3. 76M12
  4. 76M28

Keywords

  1. stochastic Navier–Stokes equations
  2. multiscale hybrid algorithm
  3. computational fluid dynamics
  4. direct simulation Monte Carlo
  5. adaptive mesh refinement

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media