Invariant Carnot–Caratheodory Metrics on $S^3$, $SO(3)$, $SL(2)$, and Lens Spaces

In this paper we study the Carnot–Caratheodory metrics on $SU(2)\simeq S^3$, $SO(3)$, and $SL(2)$ induced by their Cartan decomposition and by the Killing form. Besides computing explicitly geodesics and conjugate loci, we compute the cut loci (globally), and we give the expression of the Carnot–Caratheodory distance as the inverse of an elementary function. We then prove that the metric given on $SU(2)$ projects on the so-called lens spaces $L(p,q)$. Also for lens spaces, we compute the cut loci (globally). For $SU(2)$ the cut locus is a maximal circle without one point. In all other cases the cut locus is a stratified set. To our knowledge, this is the first explicit computation of the whole cut locus in sub-Riemannian geometry, except for the trivial case of the Heisenberg group.

  • [1 ]  Google Scholar

  • [2 ]  A. Agrachev , Compactness for sub-Riemannian length-minimizers and subanalyticity , Rend. Sem. Mat. Univ. Politec. Torino , 56 ( 2001 ), pp. 1 – 12 . Google Scholar

  • [3 ]  Google Scholar

  • [4 ]  A. Agrachev , Exponential mappings for contact sub-Riemannian structures , J. Dynam. Control Systems , 2 ( 1996 ), pp. 321 – 358 . JDCSEK 1079-2724 CrossrefGoogle Scholar

  • [5 ]  R. Beals , B. Gaveau and  , and P. C. Greiner , Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , J. Math. Pures Appl. , 79 ( 2000 ), pp. 633 – 689 . JMPAAM 0021-7824 CrossrefISIGoogle Scholar

  • [6 ]  Google Scholar

  • [7 ]  Google Scholar

  • [8 ]  Google Scholar

  • [9 ]  U. Boscain , T. Chambrion and  , and G. Charlot , Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy , Discrete Contin. Dyn. Syst. Ser. B , 5 ( 2005 ), pp. 957 – 990 . 1531-3492 CrossrefISIGoogle Scholar

  • [10 ]  U. Boscain , T. Chambrion and  , and J.-P. Gauthier , On the $K+P$ problem for a three-level quantum system: Optimality implies resonance , J. Dynam. Control Systems , 8 ( 2002 ), pp. 547 – 572 . JDCSEK 1079-2724 CrossrefISIGoogle Scholar

  • [11 ]  Google Scholar

  • [12 ]  U. Boscain and  and S. Polidoro , Gaussian estimates for hypoelliptic operators via optimal control , Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. Mat. Appl. , 18 ( 2007 ), pp. 333 – 342 . CrossrefGoogle Scholar

  • [13 ]  Google Scholar

  • [14 ]  Google Scholar

  • [15 ]  Y. Chitour , F. Jean and  , and E. Trélat , Genericity results for singular curves , J. Differential Geom. , 73 ( 2006 ), pp. 45 – 73 . JDGEAS 0022-040X CrossrefISIGoogle Scholar

  • [16 ]  Y. Eliashberg , Contact 3-manifolds twenty years since J. Martinet's work , Ann. Inst. Fourier (Grenoble) , 42 ( 1992 ), pp. 165 – 192 . AIFUA7 CrossrefISIGoogle Scholar

  • [17 ]  B. Gaveau , Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents , Acta Math. , 139 ( 1977 ), pp. 95 – 153 . ACMAA8 0001-5962 CrossrefISIGoogle Scholar

  • [18 ]  Google Scholar

  • [19 ]  Google Scholar

  • [20 ]  Google Scholar

  • [21 ]  Google Scholar

  • [22 ]  Google Scholar

  • [23 ]  V. Jurdjevic , Hamiltonian point of view on non-Euclidean geometry and elliptic functions , Systems Control Lett. , 43 ( 2001 ), pp. 25 – 41 . SCLEDC 0167-6911 CrossrefISIGoogle Scholar

  • [24 ]  Google Scholar

  • [25 ]  Google Scholar

  • [26 ]  Google Scholar