Abstract

We provide a complete list of 6-critical graphs that can be embedded on the Klein bottle settling a problem of Thomassen [J. Combin. Theory Ser. B, 70 (1997), pp. 67–100, Problem 3]. The list consists of nine nonisomorphic graphs which have altogether 18 nonisomorphic 2-cell embeddings and one embedding that is not 2-cell.

MSC codes

  1. 05C15
  2. 05C10

Keywords

  1. graphs on surfaces
  2. 6-critical graphs
  3. Klein bottle
  4. Heawood formula

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
K. Appel and W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math., 21 (1977), pp. 429–490.
2.
K. Appel, W. Haken, and J. Koch, Every planar map is four colorable, Part II. Reducibility, Illinois J. Math., 21 (1977), pp. 491–567.
3.
N. Chenette, L. Postle, N. Streib, R. Thomas, and C. Yerger, Five-coloring graphs on the Klein bottle, submitted.
4.
M. DeVos, K.-I. Kawarabayashi, and B. Mohar, Locally planar graphs are 5-choosable, J. Combin. Theory Ser. B, 98 (2008), pp. 1215–1232.
5.
G. A. Dirac, Map colour theorems related to the Heawood colour formula, J. London Math. Soc., 31 (1956), pp. 460–471.
6.
G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc. (3), 7 (1957), pp. 161–195.
7.
D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, CA, 1995, pp. 632–640.
8.
D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms Appl., 3 (1999), pp. 1–27.
9.
S. Fisk, The non-existence of colorings, J. Combin. Theory Ser. B, 24 (1978), pp. 247–248.
10.
S. Fisk and B. Mohar, Coloring graphs without short non-bounding cycles, J. Combin. Theory Ser. B, 60 (1994), pp. 268–276.
11.
T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), pp. 165–192.
12.
T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), pp. 373–395.
13.
P. J. Heawood, Map colour theorem, Quart. J. Pure Appl. Math., 24 (1890), pp. 332–338.
14.
N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B, 70 (1997), pp. 2–44.
15.
N. Sasanuma, Chromatic numbers of 6-regular graphs on the Klein bottle, Discrete Math., to appear.
16.
C. Thomassen, Five-coloring graphs on the torus, J. Combin. Theory Ser. B, 62 (1994), pp. 11–33.
17.
C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62 (1994), pp. 180–181.
18.
C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B, 70 (1997), pp. 67–100.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 372 - 383
ISSN (online): 1095-7146

History

Submitted: 30 October 2007
Accepted: 9 September 2008
Published online: 14 January 2009

MSC codes

  1. 05C15
  2. 05C10

Keywords

  1. graphs on surfaces
  2. 6-critical graphs
  3. Klein bottle
  4. Heawood formula

Authors

Affiliations

Ken-ichi Kawarabayashi

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media