Analysis and Design of Unconstrained Nonlinear MPC Schemes for Finite and Infinite Dimensional Systems

We present a technique for computing stability and performance bounds for unconstrained nonlinear model predictive control (MPC) schemes. The technique relies on controllability properties of the system under consideration, and the computation can be formulated as an optimization problem whose complexity is independent of the state space dimension. Based on the insight obtained from the numerical solution of this problem, we derive design guidelines for nonlinear MPC schemes which guarantee stability of the closed loop for small optimization horizons. These guidelines are illustrated by a finite and an infinite dimensional example.

  • [1]  Google Scholar

  • [2]  Google Scholar

  • [3]  H. Chen and  and F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 34 (1998), pp. 1205–1217. ATCAA9 0005-1098 CrossrefISIGoogle Scholar

  • [4]  G. Grimm, M. J. Messina, S. E. Tuna and , and A. R. Teel, Model predictive control: For want of a local control Lyapunov function, all is not lost, IEEE Trans. Automat. Control, 50 (2005), pp. 546–558. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [5]  Google Scholar

  • [6]  L. Grüne and  and J. Pannek, Practical NMPC suboptimality estimates along trajectories, Systems Control Lett., 58 (2009), pp. 161–168. SCLEDC 0167-6911 CrossrefISIGoogle Scholar

  • [7]  Google Scholar

  • [8]  L. Grüne and  and A. Rantzer, On the infinite horizon performance of receding horizon controllers, IEEE Trans. Automat. Control, 53 (2008), pp. 2100–2111. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [9]  M. Hinze, Instantaneous closed loop control of the Navier-Stokes system, SIAM J. Control Optim., 44 (2005), pp. 564–583. SJCODC 0363-0129 LinkGoogle Scholar

  • [10]  M. Hinze and  and S. Volkwein, Analysis of instantaneous control for the Burgers equation, Nonlinear Anal., 50 (2002), pp. 1–26. CrossrefISIGoogle Scholar

  • [11]  B. Hu and  and A. Linnemann, Toward infinite-horizon optimality in nonlinear model predictive control, IEEE Trans. Automat. Control, 47 (2002), pp. 679–682. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [12]  Google Scholar

  • [13]  A. Jadbabaie and  and J. Hauser, On the stability of receding horizon control with a general terminal cost, IEEE Trans. Automat. Control, 50 (2005), pp. 674–678. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [14]  S. S. Keerthy and  and E. G. Gilbert, Optimal infinite horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving horizon approximations, J. Optimiz. Theory Appl., 57 (1988), pp. 265–293. JOTABN 0022-3239 CrossrefISIGoogle Scholar

  • [15]  Google Scholar

  • [16]  B. Lincoln and  and A. Rantzer, Relaxing dynamic programming, IEEE Trans. Autom. Control, 51 (2006), pp. 1249–1260. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [17]  L. Magni, G. De Nicolao, L. Magnani and , and R. Scattolini, A stabilizing model-based predictive control algorithm for nonlinear systems, Automatica, 37 (2001), pp. 1351–1362. ATCAA9 0005-1098 CrossrefISIGoogle Scholar

  • [18]  X. Marduel and  and K. Kunisch, Suboptimal control of transient nonisothermal viscoelastic fluid flows, Phys. Fluids, 13 (2001), pp. 2478–2491. PHFLE6 1070-6631 CrossrefISIGoogle Scholar

  • [19]  D. Q. Mayne, J. B. Rawlings, C. V. Rao and , and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), pp. 789–814. ATCAA9 0005-1098 CrossrefISIGoogle Scholar

  • [20]  D. Nešić and  and A. R. Teel, A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models, IEEE Trans. Automat. Control, 49 (2004), pp. 1103–1122. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [21]  J. A. Primbs and  and V. Nevistić, Feasibility and stability of constrained finite receding horizon control, Automatica, 36 (2000), pp. 965–971. ATCAA9 0005-1098 CrossrefISIGoogle Scholar

  • [22]  Google Scholar

  • [23]  A. Rantzer, Relaxed dynamic programming in switching systems, IEEE Proceedings — Control Theory and Applications, 153 (2006), pp. 567–574. ICTAEX 1350-2379 CrossrefISIGoogle Scholar

  • [24]  J. S. Shamma and  and D. Xiong, Linear nonquadratic optimal control, IEEE Trans. Automat. Control, 42 (1997), pp. 875–879. IETAA9 0018-9286 CrossrefISIGoogle Scholar

  • [25]  E. D. Sontag, Comments on integral variants of ISS, Syst. Control Lett., 34 (1998), pp. 93–100. SCLEDC 0167-6911 CrossrefISIGoogle Scholar