Abstract

A new coupled diffusion is proposed for joint image restoration and discontinuity detection. The system consists of two types of diffusion, an anisotropic diffusion on an image for restoration and an isotropic diffusion on the structure tensor of the image for singularity extraction. The diffusion on the image is guided by the structure tensor, and the diffusion of the structure tensor is supervised by the image. The coupled system keeps the advantages of the anisotropic model given by Weickert for image restoration, while it performs better in orientation discontinuities than the linear structure tensor. The existence and uniqueness of the solution of the model are proved, and a convergent iteration scheme is given to solve the system. Numerical experiments both on synthetic and natural images are presented to demonstrate the performance of the model.

MSC codes

  1. 68U10
  2. 65N12
  3. 62H35
  4. 65M32
  5. 35K05

Keywords

  1. anisotropic diffusion
  2. isotropic diffusion
  3. nonlinear structure tensor

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
2.
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Appl. Math. Sci. 147, Springer-Verlag, New York, 2002.
3.
J. Bai and X. C. Feng, Fractional-order anisotropic diffusion for image processing, IEEE Trans. Image Process., 16 (2007), pp. 2492–2502.
4.
H. Brezis, Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1987.
5.
T. Brox, J. Weickert, B. Bergeth, and P. Mrazek, Nonlinear structure tensors, Image Vision Comput., 24 (2006), pp. 41–55.
6.
A. Buades, B. Coll, and J.-M. Morel, Neighborhood filters and PDE's, Numer. Math., 105 (2006), pp. 1–34.
7.
F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), pp. 182–193.
8.
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), pp. 89–97.
9.
T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62 (2002), pp. 1019–1043.
10.
T. F. Chan and J. Shen, Image Processing and Analysis, SIAM, Philadelphia, 2005.
11.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam, 1978.
12.
P. G. Ciarlet and J. L. Lions, eds., Handbook of Numerical Analysis. Volume I. Finite Difference Methods. Solutions of Equations in Rn, North–Holland, Amsterdam, 1990.
13.
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
14.
L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, AMS, Providence, RI, 1998.
15.
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), pp. 595–630.
16.
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968.
17.
L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes, AMS, Providence, RI, 2001.
18.
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), pp. 629–639.
19.
L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268.
20.
G. Sapiro, Geometric Partial Differential Equations and Image Processing, Cambridge University Press, Cambridge, UK, 2001.
21.
R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, San Francisco, Melbourne, 1977.
22.
J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag, New York, 1995.
23.
J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, 1998.
24.
K. Yosida, Functional Analysis, Springer-Verlag, New York, Heidelberg, 1974.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 963 - 977
ISSN (online): 1540-3467

History

Submitted: 25 December 2007
Accepted: 12 May 2008
Published online: 17 October 2008

MSC codes

  1. 68U10
  2. 65N12
  3. 62H35
  4. 65M32
  5. 35K05

Keywords

  1. anisotropic diffusion
  2. isotropic diffusion
  3. nonlinear structure tensor

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.