Abstract

Suppose that every k points in a n point metric space X are D-distortion embeddable into $\ell_1$. We give upper and lower bounds on the distortion required to embed the entire space X into $\ell_1$. This is a natural mathematical question and is also motivated by the study of relaxations obtained by lift-and-project methods for graph partitioning problems. In this setting, we show that X can be embedded into $\ell_1$ with distortion $O(D\times\log(n/k))$. Moreover, we give a lower bound showing that this result is tight if D is bounded away from 1. For $D=1+\delta$ we give a lower bound of $\Omega(\log(n/k)/\log(1/\delta))$; and for $D=1$, we give a lower bound of $\Omega(\log n/(\log k+\log\log n))$. Our bounds significantly improve on the results of Arora et al. who initiated a study of these questions.

MSC codes

  1. 68W25
  2. 68Q17
  3. 54E40
  4. 05C12
  5. 90C05

Keywords

  1. metric embeddings
  2. global local properties
  3. lift and project

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian, and K. Talwar, Reconstructing approximate tree metrics, Proceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing, ACM, New York, 2007, pp. 43–52.
2.
I. Abraham, Y. Bartal, and O. Neiman, Local embeddings of metric spaces, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 631–640.
3.
S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis, Proving integrality gaps without knowing the linear program, Theory Comput., 2 (2006), pp. 19–51.
4.
S. Arora, J. Lee, and A. Naor, Euclidean distortion and the sparsest cut, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, ACM, New York, 2005, pp. 553–562.
5.
S. Arora, L. Lovász, I. Newman, Y. Rabani, Y. Rabinovich, and S. Vempala, Local versus global properties of metric spaces, Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2006, pp. 41–50.
6.
S. Arora, S. Rao, and U. Vazirani, Expander flows, geometric embeddings and graph partitioning, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York, 2004, pp. 222–231.
7.
Y. Aumann and Y. Rabani, An $O(\logk)$ approximate min-cut max-flow theorem and approximation algorithm, SIAM J. Comput., 27 (1998), pp. 291–301.
8.
J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., 52 (1985), pp. 46–52.
9.
J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math, 56 (1986), pp. 222–230.
10.
G. Calinescu, H. Karloff, and Y. Rabani, Approximation algorithms for the 0-extension problem, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2001, pp. 8–16.
11.
H. Chan, M. Dinitz, and A. Gupta, Spanners with slack, Lecture Notes in Comput. Sci. 4168, Springer, Berlin, 2006, pp. 196–207.
12.
M. Charikar, K. Makarychev, and Y. Makarychev, Integrality gaps for Sherali–Adams relaxations, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, ACM, New York, 2009, pp. 293–302.
13.
W. F. de la Vega and C. Kenyon-Mathieu, Linear programming relaxations of Maxcut, Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2007, pp. 53–61.
14.
J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, Proceedings of the 35th Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp. 448–455.
15.
E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math. Vereinig, 32 (1923), pp. 175–176.
16.
N. Linial, E. London, and Yu. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica, 15 (1995), pp. 215–245.
17.
J. R. Lee, M. Mendel, and A. Naor, Metric structures in $L_1$: Dimension, snowflakes, and average distortion, European J. Combin., 26 (2005), pp. 1180–1190.
18.
L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM J. Optim., 1 (1991), pp. 166–190.
19.
J. Matoušek, On embedding expanders into $\ell_p$ spaces, Israel J. Math., 102 (1997), pp. 189–197.
20.
J. Matoušek, On embedding trees into uniformly convex Banach spaces, Israel J. Math., 114 (1999), pp. 221–237.
21.
J. Matoušek, Lectures on Discrete Geometry, Grad. Texts in Math. 212, Springer-Verlag, New York, 2002.
22.
M. Mendel and A. Naor, Euclidean quotients of finite metric spaces, Adv. Math., 189 (2004), pp. 451–494.
23.
K. Menger, Untersuchungen über allgemeine metrik, Math. Ann., 100 (1928), pp. 75–163.
24.
H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM J. Discrete Math., 3 (1990), pp. 411–430.
25.
G. Schoenebeck, L. Trevisan, and M. Tulsiani, Tight integrality gaps for Lovász-Schrijver LP relaxations of vertex cover and max cut, Proceedings of the 39th Annual Symposium on ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 302–310.
26.
N. Tomczak-Jaegermann, Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monogr. Surveys Pure Appl. Math. 38, Longman Scientific & Technical, Harlow, UK, 1989.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 2487 - 2512
ISSN (online): 1095-7111

History

Submitted: 2 January 2008
Accepted: 13 April 2009
Published online: 30 April 2010

MSC codes

  1. 68W25
  2. 68Q17
  3. 54E40
  4. 05C12
  5. 90C05

Keywords

  1. metric embeddings
  2. global local properties
  3. lift and project

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.