The Effect of Quadrature Errors in the Computation of $L^2 $ Piecewise Polynomial Approximations

Abstract

In this paper we investigate the $L^2 $ piecewise polynomial approximation problem. $L^2 $ bounds for the derivatives of the error in approximating sufficiently smooth functions by polynomial splines follow immediately from the analogous results for polynomial spline interpolation. We derive $L^2 $ bounds for the errors introduced by the use of two types of quadrature rules for the numerical computation of $L^2 $ piecewise polynomial approximations. These bounds enable us to present some asymptotic results and to examine the consistent convergence of appropriately chosen sequences of such approximations. Some numerical results are also included.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The theory of splines and their applications, Academic Press, New York, 1967xi+284
2.
Edwin F. Beckenbach, Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 30, Springer-Verlag, Berlin, 1961xii+198
3.
G. Birkhoff, M. H. Schultz, R. S. Varga, Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numer. Math., 11 (1968), 232–256
4.
H. Cheng, P. D. Patent, On an inequality of E. Schmidt, submitted
5.
Philip J. Davis, Philip Rabinowitz, Numerical integration, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967ix+230
6.
C. de Boor, J. R. Rice, Least squares cubic spline approximation I-fixed knots, Rep., CSD-TR-20, Computer Sciences Dept., Purdue University, Lafayette, Ind., 1968
7.
C. de Boor, J. R. Rice, Least squares spline approximation II-variable knots, Rep., CSD-TR-21, Computer Sciences Dept., Purdue University, Lafayette, Ind., 1968
8.
T. N. E. Greville, Numerical procedures for interpolation by spline functions, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 1 (1964), 53–68
9.
R. J. Herbold, M. H. Schultz, R. S. Varga, The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques, Aequationes Math., 3 (1969), 247–270
10.
Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964xi+257
11.
Eugene Isaacson, Herbert Bishop Keller, Analysis of numerical methods, John Wiley & Sons Inc., New York, 1966xv+541
12.
R. C. Klaus, H. C. Van Ness, An extension of the spline fit technique and applications to thermodynamic data, Amer. Inst. Chem. Engrg. J., 13 (1967), 1132–1136
13.
P. D. Patent, Ph.D. Thesis, Least square polynomial spline approximation, California Institute of Technology, Pasadena, Calif., 1972
14.
Christian H. Reinsch, Smoothing by spline functions. I, II, Numer. Math., 10 (1967), 177–183; ibid. 16 (1970/71), 451–454
15.
Klaus Ritter, I. J. Schoenberg, Generalized spline interpolation and nonlinear programmingApproximations with special emphasis on spline functions (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1969), Academic Press, New York, 1969, 75–117
16.
Arthur Sard, Linear approximation, American Mathematical Society, Providence, R.I., 1963xi+544
17.
Martin H. Schultz, I. J. Schoenberg, Multivariate spline functions and elliptic problemsApproximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969), Academic Press, New York, 1969, 279–347
18.
Martin H. Schultz, Error bounds for polynomial spline interpolation, Math. Comp., 24 (1970), 507–515
19.
Martin H. Schultz, Spline analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1973xiii+156
20.
M. H. Schultz, private communication
21.
M. H. Schultz, R. S. Varga, L-splines, Numer. Math., 10 (1967), 345–369
22.
L. L. Schumaker, T. N. E. Greville, Approximation by splines, Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, 65–85
23.
L. L. Schumaker, T. N. E. Greville, Some algorithms for the computation of interpolating and approximating spline functions, Theory and Applications of Spline Functions (Proceedings of Seminar, Math, Research Center, Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, 87–102
24.
L. B. Smith, The use of man-machine interaction in data fitting problems, SLAG-96, Stanford University, Stanford, Calif., 1969
25.
Richard S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1962xiii+322

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 344 - 361
ISSN (online): 1095-7170

History

Submitted: 10 September 1974
Published online: 14 July 2006

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media