Abstract

In this paper we discuss the design of algorithms for interpolating discrete data using $C^1 $-quadratic splines in such a way that the monotonicity and/or convexity of the data is preserved. The analysis culminates in an interactive algorithm which takes full advantage of the flexibility which quadratic splines permit.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Akima, A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mach., 17 (1970), 589–602
2.
Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, Vol. 27, Springer-Verlag, New York, 1978xxiv+392
3.
Carl de Boor, Blair Swartz, Piecewise monotone interpolation, J. Approximation Theory, 21 (1977), 411–416
4.
J. Butland, A method of interpolating reasonable-shaped curves through any data, Proc. Computer Graphics 80, Online Publications Ltd., Middlesex, UK, 1980, 409–422
5.
A. K. Cline, Scalar- and planar-valued curve fitting using splines under tension, Comm. ACM, 17 (1974), 218–220
6.
L. E. Deimel, C. L. Doss, R. J. Fornaro, D. F. McAllister, J. A. Roulier, Application of shape-preserving spline interpolation to interactive editing of photogrammetric data, Proc. SIGGRAPH 78, Vol. 12, 1978, 93–99
7.
L. E. Deimel, D. F. McAllister, J. A. Roulier, Smooth curve fitting with shape preservation using osculatory quadratic splines, Proc. 11th Annual Conference on the Interface Between Statistics and Computer Science, 1978, 343–347
8.
R. P. Dube, Univariate blending functions and alternatives, Computer Graphics and Image Processing, 6 (1977), 394–408
9.
T. M. R. Ellis, D. H. McLain, Algorithm 514. A new method of cubic curve fitting using local data, ACM Trans. Math. Software, 3 (1977), 175–178
10.
F. N. Fritsch, R. E. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal., 17 (1980), 238–246
11.
David F. McAllister, John A. Roulier, Interpolation by convex quadratic splines, Math. Comp., 32 (1978), 1154–1162
12.
David F. McAllister, John A. Roulier, An algorithm for computing a shape-preserving osculatory quadratic spline, ACM Trans. Math. Software, 7 (1981), 331–347
13.
David F. McAllister, John A. Roulier, Algorithm 574. Shape-preserving osculatory quadratic splines, ACM Trans. Math. Software, 7 (1981), 384–386
14.
David F. McAllister, Eli Passow, John A. Roulier, Algorithms for computing shape preserving spline interpolations to data, Math. Comp., 31 (1977), 717–725
15.
D. F. McAllister, J. A. Roulier, M. Evans, Generation of random numbers using shape preserving quadratic splines, Proc. 16th Ann. Southeast Regional ACM Conf., 1978, 216–218
16.
Eli Passow, Piecewise monotone spline interpolation, J. Approximation Theory, 12 (1974), 240–241
17.
Eli Passow, John A. Roulier, Monotone and convex spline interpolation, SIAM J. Numer. Anal., 14 (1977), 904–909
18.
Larry L. Schumaker, Spline functions: basic theory, John Wiley & Sons Inc., New York, 1981xiv+553
19.
Sam W. Young, Piecewise monotone polynomial interpolation, Bull. Amer. Math. Soc., 73 (1967), 642–643

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 854 - 864
ISSN (online): 1095-7170

History

Submitted: 30 March 1982
Published online: 17 July 2006

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media