Abstract

In this paper, we propose a new optimization approach for the simultaneous computation of optical flow and edge detection therein. Instead of using an Ambrosio–Tortorelli type energy functional, we reformulate the optical flow problem as a multidimensional control problem. The optimal control problem is solved by discretization methods and large-scale optimization techniques. The edge detector can be immediately built from the control variables. We provide three series of numerical examples. The first shows that the mere presence of a gradient restriction has a regularizing effect, while the second demonstrates how to balance the regularizing effects of a term within the objective and the control restriction. The third series of numerical results is concerned with the direct evaluation of a TV-regularization term by introduction of control variables with sign restrictions.

MSC codes

  1. 35F30
  2. 35R25
  3. 49J20
  4. 49M37
  5. 68U10

Keywords

  1. optical flow
  2. edge detection
  3. partial differential equation constrained optimization
  4. optimal control problem
  5. direct methods

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence, Comm. Pure Appl. Math., 43 (1990), pp. 999–1036.
2.
L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), 6 (1992), pp. 105–123.
3.
G. Aubert, R. Deriche, and P. Kornprobst, Computing optical flow via variational techniques, SIAM J. Appl. Math., 60 (1999), pp. 156–182.
4.
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd ed., Springer, New York, 2006.
5.
G. Bellettini and A. Coscia, Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., 15 (1994), pp. 201–224.
6.
B. Bourdin, Image segmentation with a finite element method, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 229–244.
7.
T. Brox, A. Bruhn, and J. Weickert, Variational motion segmentation with level sets, in Computer Vision—ECCV 2006, Lecture Notes in Comput. Sci. 3951, H. Bischof, A. Leonardis, and A. Pinz, eds., Springer, Berlin, Heidelberg, 2006, pp. 471–483.
8.
A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr, A multigrid platform for real-time motion computation with discontinuity-preserving variational methods, Int. J. Comput. Vision, 70 (2006), pp. 257–277.
9.
A. Bruhn, J. Weickert, and C. Schnörr, Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods, Int. J. Comput. Vision, 61 (2005), pp. 211–231.
10.
C. Brune, Berechnung des Optischen Flusses und Kantenerkennung mit Optimierungsmethoden, Diploma thesis, Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms-Universität Münster, Münster, Germany, 2007.
11.
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), pp. 89–97.
12.
B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd ed., Springer, New York, 2008.
13.
G. Deweß and P. Helbig, Einschätzen und Optimieren von Verkehrsflüssen, in Mathematik in der Praxis. Fallstudien aus Industrie, Wirtschaft, Naturwissenschaften und Medizin, A. Bachem, M. Jünger, and R. Schrader, eds., Springer, Berlin, 1995, pp. 473–492.
14.
W. Enkelmann, Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences, Comput. Vision Graph. Image Process., 43 (1988), pp. 150–177.
15.
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
16.
R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, 2nd ed., Brooks/Cole—Thomson Learning, Pacific Grove, CA, 2003.
17.
L. Franek, M. Franek, H. Maurer, and M. Wagner, Image Restoration and Simultaneous Edge Detection by Optimal Control Methods, Preprint-Reihe Mathematik, Preprint Nr. M-05/2008, BTU Cottbus, Cottbus, Germany; Optimal Control Appl. Methods, to appear.
18.
T. Gandhi, S. Devadiga, R. Kasturi, and O. Camps, Detection of obstacles on runways using ego-motion compensation and tracking of significant features, Image Vision Comput., 18 (2000), pp. 805–815.
19.
H. Grossauer, Inpainting of movies using optical flow, in Mathematical Models for Registration and Applications to Medical Imaging, Math. Ind. 10, O. Scherzer, ed., Springer, Berlin, 2006, pp. 151–162.
20.
L. He, M. Burger, and S. J. Osher, Iterative total variation regularization with non-quadratic fidelity, J. Math. Imaging Vision, 26 (2006), pp. 167–184.
21.
W. Hinterberger and O. Scherzer, Models for image interpolation based on the optical flow, Computing, 66 (2001), pp. 231–247.
22.
W. Hinterberger, O. Scherzer, C. Schnörr, and J. Weickert, Analysis of optical flow models in the framework of the calculus of variations, Numer. Funct. Anal. Optim., 23 (2002), pp. 69–89.
23.
J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. I. Fundamentals, Grundlehren Math. Wiss. 305, Springer, Berlin, 1993.
24.
B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), pp. 185–203.
25.
B. Jansen, Interior Point Techniques in Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
26.
B. Jung and G. S. Sukhatme, Real-Time Motion Tracking from a Mobile Robot, Technical Report CRES-05-008, Center for Robotics and Embedded Systems, University of Southern California, Los Angeles.
27.
P. Kornprobst, R. Deriche, and G. Aubert, Image sequence analysis via partial differential equations, J. Math. Imaging Vision, 11 (1999), pp. 5–26.
28.
A. Kumar, S. Haker, A. Stillman, C. W. Curry, D. P. Giddens, A. R. Tannenbaum, and A. Yezzi, Total-variational-based optical flow for cardiac-wall motion tracking, in Medical Imaging 2001: Image Processing, Proc. SPIE 4322, M. Sonka and K. M. Hanson, eds., SPIE—International Society for Optical Engineering, Bellingham, WA, 2001, pp. 1550–1553.
29.
C. Laird and A. Wächter, Introduction to IPOPT: A Tutorial for Downloading, Installing, and Using IPOPT. Revision No. 1024, http://www.coin-or.org/Ipopt/documentation/ (last access: 29.02.2008).
30.
H. Maurer and H. D. Mittelmann, Optimization techniques for solving elliptic control problems with control and state constraints. I. Boundary control, Comput. Optim. Appl., 16 (2000), pp. 29–55.
31.
H. Maurer and H. D. Mittelmann, Optimization techniques for solving elliptic control problems with control and state constraints. II. Distributed control, Comput. Optim. Appl., 18 (2001), pp. 141–160.
32.
B. McCane, K. Novins, D. Crannitch, and B. Galvin, On benchmarking optical flow, Comput. Vis. Image Underst., 84 (2001), pp. 126–143.
33.
P. Nesi, Variational approach to optical flow estimation managing discontinuities, Image Vision Comput., 11 (1993), pp. 419–439.
34.
N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert, Highly accurate optic flow computation with theoretically justified warping, Int. J. Comput. Vision, 67 (2006), pp. 141–158.
35.
S. Pickenhain and M. Wagner, Critical points in relaxed deposit problems, in Calculus of Variations and Optimal Control, Chapman & Hall/CRC Res. Notes Math. 411, A. Ioffe, S. Reich, and I. Shafrir, eds., Chapman & Hall/CRC Press, Boca Raton, FL, 2000, pp. 217–236.
36.
K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications, Springer, Berlin, Heidelberg, New York, 2000.
37.
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, Variational Methods in Imaging, Springer, New York, 2009.
38.
S. P. Sethi and G. L. Thompson, Optimal Control Theory: Applications to Management Science and Economics, 2nd ed., Springer, New York, 2006.
39.
N. Slesareva, A. Bruhn, and J. Weickert, Optic flow goes stereo: A variational method for estimating discontinuity-preserving dense disparity maps, in Pattern Recognition. Proceedings of the 27th DAGM Symposium, Vienna, Austria, 2005, Lecture Notes in Comput. Sci. 3663, W. Kropatsch, R. Sablatnig, and A. Hanbury, eds., Springer, Berlin, Heidelberg, 2005, pp. 33–40.
40.
A. Talukder and L. Matthies, Real-time detection of moving objects for moving vehicles using dense stereo and optical flow, in Proceedings of the 2004 IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 2004, Vol. IV, IEEE, Piscataway, NJ, 2004, pp. 3718–3725.
41.
A. Telea, T. Preusser, C. Garbe, M. Droske, and M. Rumpf, A variational approach to joint denoising, edge detection and motion estimation, in Pattern Recognition. Proceedings of the 28th DAGM Symposium, Berlin, Germany, 2006, Lecture Notes in Comput. Sci. 4174, K. Franke, K.-R. Müller, B. Nickolay, and R. Schäfer, eds., Springer, Berlin, Heidelberg, 2006, pp. 525–535.
42.
K. Theissen, Optimale Steuerprozesse unter partiellen Differentialgleichungs-Restriktionen mit linear eingehender Steuerfunktion, Ph.D. thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany, 2006.
43.
G. Vossen and H. Maurer, On $L^1$-minimization in optimal control and applications to robotics, Optimal Control Appl. Methods, 27 (2006), pp. 301–321.
44.
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. Ser. A, 106 (2006), pp. 25–57.
45.
M. Wagner, Pontryagin's maximum principle for multidimensional control problems in image processing, J. Optim. Theory Appl., 140 (2009), pp. 543–576.
46.
J. Weickert and T. Brox, Diffusion and regularization of vector- and matrix-valued images, in Inverse Problems, Image Analysis, and Medical Imaging, Contemp. Math. 313, M. Zuhair Nashed and O. Scherzer, eds., AMS, Providence, RI, 2002, pp. 251–268.
47.
J. Weickert and C. Schnörr, A theoretical framework for convex regularizers in PDE-based computation of image motion, Int. J. Comput. Vision, 45 (2001), pp. 245–264.
48.
J. Weickert and C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint, J. Math. Imaging Vision, 14 (2001), pp. 245–255.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 1190 - 1210
ISSN (online): 1936-4954

History

Submitted: 23 May 2008
Accepted: 23 June 2009
Published online: 11 November 2009

MSC codes

  1. 35F30
  2. 35R25
  3. 49J20
  4. 49M37
  5. 68U10

Keywords

  1. optical flow
  2. edge detection
  3. partial differential equation constrained optimization
  4. optimal control problem
  5. direct methods

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media