Abstract

In this article the pathwise numerical approximation of semilinear parabolic stochastic partial differential equations (SPDEs) driven by additive noise is considered. A new numerical scheme for the time and space discretization of such SPDEs is proposed, and this scheme is shown to converge for such SPDEs faster than standard numerical schemes such as the linear implicit Euler scheme or the linear-implicit Crank–Nicholson scheme. The suggested scheme takes advantage of the smoothing effect of the dominant linear operator and of two linear functionals of the noise process of the SPDE. The abstract setting under which the scheme is analyzed includes SPDEs driven by fractional Brownian motions too.

MSC codes

  1. 65C30
  2. 60H15

Keywords

  1. stochastic partial differential equation
  2. numerical approximation
  3. Galerkin approximation
  4. higher order approximation
  5. pathwise approximation
  6. additive noise
  7. fractional Brownian motion

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Alabert and I. Gyöngy, On numerical approximation of stochastic Burgers' equation, in From Stochastic Calculus to Mathematical Finance, Springer-Verlag, Berlin, 2006, pp. 1–15.
2.
E. J. Allen, S. J. Novosel, and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stoch. Stoch. Rep., 64 (1998), pp. 117–142.
3.
A. Ashyralyev, On modified Crank-Nicholson difference schemes for stochastic parabolic equation, Numer. Funct. Anal. Optim., 29 (2008), pp. 268–282.
4.
I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–825.
5.
M. Barton-Smith, A. Debussche, and L. Di Menza, Numerical study of two-dimensional stochastic NLS equations, Numer. Methods Partial Differential Equations, 21 (2005), pp. 810–842.
6.
J. F. Bennaton, Discrete time Galerkin approximations to the nonlinear filtering solution, J. Math. Anal. Appl., 110 (1985), pp. 364–383.
7.
A. Bensoussan, R. Glowinski, and A. Rascanu, Approximation of some stochastic differential equations by the splitting up method, Appl. Math. Optim., 25 (1992), pp. 81–106.
8.
F. E. Benth and J. Gjerde, Convergence rates for finite element approximations of stochastic partial differential equations, Stoch. Stoch. Rep., 63 (1998), pp. 313–326.
9.
H. Bessaih and H. Schurz, Upper bounds on the rate of convergence of truncated stochastic infinite-dimensional differential systems with H-regular noise, J. Comput. Appl. Math., 208 (2007), pp. 354–361.
10.
D. Blömker and A. Jentzen, Galerkin Approximations for the Stochastic Burgers Equation, preprint, Institute for Mathematics, University of Augsburg, Augsburg, Germany, 2009.
11.
T. Caraballo and P. Kloeden, The pathwise numerical approximation of stationary solutions of semilinear stochastic evolution equations, Appl. Math. Optim., 54 (2006), pp. 401–415.
12.
D. Crisan, Particle approximations for a class of stochastic partial differential equations, Appl. Math. Optim., 54 (2006), pp. 293–314.
13.
D. Crisan and J. Xiong, Numerical solutions for a class of SPDEs over bounded domains, in Conference Oxford sur les méthodes de Monte Carlo séquentielles, ESAIM Proc. 19, EDP Sci., Les Ulis, France, 2007, pp. 121–125.
14.
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.
15.
A. M. Davie and J. G. Gaines, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Math. Comp., 70 (2000), pp. 121–134.
16.
A. Debussche, Weak approximation of stochastic partial differential equations: The nonlinear case, Math. Comp., 80 (2011), pp. 89–117.
17.
A. Debussche and L. Di Menza, Numerical resolution of stochastic focusing NLS equations, Appl. Math. Lett., 15 (2002), pp. 661–669.
18.
A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D, 162 (2002), pp. 131–154.
19.
A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96 (2004), pp. 733–770.
20.
A. De Bouard and A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006), pp. 369–399.
21.
A. De Bouard, A. Debussche, and L. Di Menza, Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations, Monte Carlo Methods Appl., 7 (2001), pp. 55–63.
22.
A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation, Phys. D, 134 (1999), pp. 200–226.
23.
A. Debussche and J. Printems, Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 761–781.
24.
A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation, Math. Comp., 78 (2009), pp. 845–863.
25.
Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), pp. 1421–1445.
26.
P. Florchinger and F. Le Gland, Particle approximation for first order stochastic partial differential equations, in Applied Stochastic Analysis (New Brunswick, NJ, 1991), Lecture Notes in Control and Inform. Sci. 177, Springer-Verlag, Berlin, 1992, pp. 121–133.
27.
J. G. Gaines, Numerical experiments with S(P)DE's, in Stochastic Partial Differential Equations (Edinburgh, 1994), London Math. Soc. Lecture Note Ser. 216, Cambridge University Press, Cambridge, UK, 1995, pp. 55–71.
28.
M. Geissert, M. Kovács, and S. Larsson, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, BIT, 49 (2009), pp. 343–356.
29.
A. Germani and M. Piccioni, Semidiscretization of stochastic partial differential equations on $R\sp d$ by a finite-element technique, Stochastics, 23 (1988), pp. 131–148.
30.
E. Gobet, G. Pagès, H. Pham, and J. Printems, Discretization and simulation of the Zakai equation, SIAM J. Numer. Anal., 44 (2006), pp. 2505–2538.
31.
W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximation of parabolic stochastic PDEs, Bull. Austral. Math. Soc., 54 (1996), pp. 79–85.
32.
I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I, Potential Anal., 9 (1998), pp. 1–25.
33.
I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II, Potential Anal., 11 (1999), pp. 1–37.
34.
I. Gyöngy, Approximations of stochastic partial differential equations, in Stochastic Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math. 227, Dekker, New York, 2002, pp. 287–307.
35.
I. Gyöngy and N. Krylov, On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), pp. 564–591.
36.
I. Gyöngy and N. Krylov, On the rate of convergence of splitting-up approximations for SPDEs, in Stochastic Inequalities and Applications, Progr. Probab. 56, Birkhäuser, Basel, 2003, pp. 301–321.
37.
I. Gyöngy and T. Martínez, On numerical solution of stochastic partial differential equations of elliptic type, Stochastics, 78 (2006), pp. 213–231.
38.
I. Gyöngy and A. Millet, On discretization schemes for stochastic evolution equations, Potential Anal., 23 (2005), pp. 99–134.
39.
I. Gyöngy and A. Millet, Rate of convergence of implicit approximations for stochastic evolution equations, in Stochastic Differential Equations: Theory and Applications, Interdiscip. Math. Sci. 2, World Scientific, Hackensack, NJ, 2007, pp. 281–310.
40.
I. Gyöngy and A. Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal., 30 (2009), pp. 29–64.
41.
I. Gyöngy and D. Nualart, Implicit schemes for quasi-linear parabolic partial differential equations perturbed by space-time white noise, Stochastic Process. Appl., 58 (1995), pp. 57–72.
42.
I. Gyöngy and D. Nualart, Implicit schemes for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal., 7 (1997), pp. 725–757.
43.
E. Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147 (2002), pp. 485–516.
44.
E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), pp. 141–186.
45.
E. Hausenblas, Weak approximation for semilinear stochastic evolution equations, in Stochastic Analysis and Related Topics VIII, Progr. Probab. 53, Birkhäuser, Basel, 2003, pp. 111–128.
46.
E. Hausenblas, Weak approximation of stochastic partial differential equations, in Stochastic Analysis and Related Topics VIII. Silivri Workshop, U. Capar and A. Üstünel, eds., Progr. Probab., Birkhauser, Basel, 2003.
47.
E. Hausenblas, Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type, SIAM J. Numer. Anal., 46 (2008), pp. 437–471.
48.
E. Hausenblas and I. Marchis, A numerical approximation of parabolic stochastic partial differential equations driven by a Poisson random measure, BIT, 46 (2006), pp. 773–811.
49.
K. Ito and B. Rozovskii, Approximation of the Kushner equation for nonlinear filtering, SIAM J. Control Optim., 38 (2000), pp. 893–915.
50.
A. Jentzen, Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients, Potential Anal., 31 (2009), pp. 375–404.
51.
A. Jentzen, Taylor expansions of solutions of stochastic partial differential equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), pp. 515–557.
52.
A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of SPDEs with additive space-time noise, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), pp. 649–667.
53.
A. Jentzen and P. E. Kloeden, The numerical approximation of stochastic partial differential equations, Milan J. Math., 77 (2009), pp. 205–244.
54.
A. Jentzen and P. E. Kloeden, Taylor expansions of solutions of stochastic partial differential equations with additive noise, Ann. Probab., 38 (2010), pp. 532–569.
55.
A. Jentzen, P. E. Kloeden, and G. Winkel, Efficient simulation of nonlinear parabolic SPDEs with additive noise, Ann. Appl. Probab., to appear.
56.
G. Jetschke, Lattice approximation of a nonlinear stochastic partial differential equation with white noise, in Random Partial Differential Equations (Oberwolfach, 1989), Internat. Ser. Numer. Math. 102, Birkhäuser, Basel, 1991, pp. 107–126.
57.
Y. T. Kim and J. H. Rhee, Approximation of the solution of stochastic evolution equation with fractional Brownian motion, J. Korean Statist. Soc., 33 (2004), pp. 459–470.
58.
P. E. Kloeden and S. Shott, Linear-implicit strong schemes for It$\hat{o}$-Galerkin approximation of stochastic PDEs, J. Appl. Math. Stoch. Anal., 14 (2001), pp. 47–53.
59.
M. Kovács, S. Larsson, and F. Lindgren, Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise, Numer. Algorithms, 53 (2010), pp. 309–320.
60.
T. Kurtz and J. Xiong, Numerical solutions for a class of SPDEs with application to filtering, in Stochastics in Finite and Infinite Dimensions, Trends Math., Birkhäuser Boston, Boston, 2001, pp. 233–258.
61.
F. Le Gland, Splitting-up approximation for SPDEs and SDEs with application to nonlinear filtering, in Stochastic Partial Differential Equations and Their Applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci. 176, Springer-Verlag, Berlin, 1992, pp. 177–187.
62.
H. Lisei, Approximation by time discretization of special stochastic evolution equations, Math. Pannon., 12 (2001), pp. 245–268.
63.
G. J. Lord and J. Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal., 54 (2004), pp. 587–604.
64.
G. J. Lord and T. Shardlow, Postprocessing for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 45 (2007), pp. 870–889.
65.
G. T. Lord and A. Tambue, A Modified Semi–Implict Euler-Maruyama Scheme for Finite Element Discretization of SPDEs, 2010; available online from http://www.arxiv.org/abs/arXiv:1004.1998.
66.
G. T. Lord and A. Tambue, Stochastic Exponential Integrators for a Finite Element Discretization of SPDEs, 2010; available online from http://www.arxiv.org/abs/arXiv:1005.5315.
67.
S. V. Lototsky, Problems in Statistics of Stochastic Differential Equations, Doctoral thesis, University of Southern California, Los Angeles, CA, 1996.
68.
S. V. Lototsky and K. Stemmann, Solving SPDEs driven by colored noise: A chaos approach, Quart. Appl. Math., 66 (2008), pp. 499–520.
69.
M. Loy, Splitting Integratoren für stochastische Schrödinger-Gleichungen, Doctoral thesis, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, 2007.
70.
A. Lunardi, Interpolation Theory, 2nd ed., Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009.
71.
H. Manouzi, A finite element approximation of linear stochastic PDEs driven by multiplicative white noise, Int. J. Comput. Math., 85 (2008), pp. 527–546.
72.
T. Martinez and M. Sanz-Solé, A lattice scheme for stochastic partial differential equations of elliptic type in dimension $d\geq 4$, Appl. Math. Optim., 54 (2006), pp. 343–368.
73.
S. A. Mel'nik, Finite-difference approximation of the solution of a stochastic evolution equation, in Theory of Random Processes, No. 12, Naukova Dumka, Kiev, 1984, pp. 56–59.
74.
A. Millet and P.-L. Morien, On implicit and explicit discretization schemes for parabolic SPDEs in any dimension, Stochastic Process. Appl., 115 (2005), pp. 1073–1106.
75.
C. Mora, Numerical simulation of stochastic evolution equations associated to quantum Markov semigroups, Math. Comp., 73 (2004), pp. 1393–1415.
76.
T. Müller-Gronbach and K. Ritter, Lower bounds and nonuniform time discretization for approximation of stochastic heat equations, Found. Comput. Math., 7 (2007), pp. 135–181.
77.
T. Müller-Gronbach and K. Ritter, An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise, BIT, 47 (2007), pp. 393–418.
78.
T. Müller-Gronbach, K. Ritter, and T. Wagner, Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise, in Monte Carlo and Quasi-Monte Carlo Methods 2006, A. Keller, S. Heinrich, and H. Niederreiter, eds., Springer-Verlag, Berlin, 2008, pp. 577–589.
79.
T. Müller-Gronbach, K. Ritter, and T. Wagner, Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes, Stoch. Dyn., 8 (2008), pp. 519–541.
80.
A. Ogrowsky, Räumliche und zeitliche Diskretisierung einer stabilen stochastischen partiellen Differentialgleichung, Diplomarbeit, Universität Paderborn, Paderborn, Germany, 2007.
81.
R. Pettersson and M. Signahl, Numerical approximation for a white noise driven SPDE with locally bounded drift, Potential Anal., 22 (2005), pp. 375–393.
82.
C. Prévot and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer-Verlag, Berlin, 2007.
83.
J. Printems, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 1055–1078.
84.
C. Roth, Stochastische partielle Differentialgleichungen 1. Ordnung, Doctoral thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, 2002.
85.
C. Roth, Difference Methods for stochastic partial differential equations, ZAMM Z. Angew. Math. Mech., 82 (2002), pp. 821–830.
86.
C. Roth, A combination of finite difference and Wong-Zakai methods for hyperbolic stochastic partial differential equations, Stoch. Anal. Appl., 24 (2006), pp. 221–240.
87.
C. Roth, Weak approximations of solutions of a first order hyperbolic stochastic partial differential equation, Monte Carlo Methods Appl., 13 (2007), pp. 117–133.
88.
H. Schurz, Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), pp. 353–363.
89.
M. Seesselberg and F. Petruccione, Numerical integration of stochastic partial differential equations, Comput. Phys. Comm., 74 (1993), pp. 303–315.
90.
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.
91.
T. Shardlow, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim., 20 (1999), pp. 121–145.
92.
T. Shardlow, Weak convergence of a numerical method for a stochastic heat equation, BIT, 43 (2003), pp. 179–193.
93.
T. Shardlow, Numerical simulation of stochastic PDEs for excitable media, J. Comput. Appl. Math., 175 (2005), pp. 429–446.
94.
T. G. Theting, Numerical solution of Wick-stochastic partial differential equations, in Proceedings of the International Conference on Stochastic Analysis and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 303–349.
95.
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, Heidelberg, New York, 1997.
96.
J. B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), pp. 1–43.
97.
Y. Yan, Error Analysis and Smoothing Properties of Discretized Deterministic and Stochastic Parabolic Problems, Dissertation, Chalmers University of Technology, Gothenburg, Sweden, 2000.
98.
Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT, 44 (2004), pp. 829–847.
99.
Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), pp. 1363–1384.
100.
H. Yoo, Semi-discretization of stochastic partial differential equations on $ \mathbb{R}^1 $ by a finite-difference method, Math. Comp., 69 (1999), pp. 653–666.
101.
Q. Zhang, W. Zhang, and Z. Nie, Convergence of the Euler scheme for stochastic functional partial differential equations, Appl. Math. Comput., 155 (2004), pp. 479–492.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 642 - 667
ISSN (online): 1095-7170

History

Submitted: 14 November 2008
Accepted: 20 December 2010
Published online: 5 April 2011

MSC codes

  1. 65C30
  2. 60H15

Keywords

  1. stochastic partial differential equation
  2. numerical approximation
  3. Galerkin approximation
  4. higher order approximation
  5. pathwise approximation
  6. additive noise
  7. fractional Brownian motion

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media