# Higher Order Pathwise Numerical Approximations of SPDEs with Additive Noise

## Abstract

### MSC codes

### Keywords

## Get full access to this article

View all available purchase options and get full access to this article.

## References

*On numerical approximation of stochastic Burgers' equation*, in From Stochastic Calculus to Mathematical Finance, Springer-Verlag, Berlin, 2006, pp. 1–15.

*Stoch. Stoch. Rep.*, 64 (1998), pp. 117–142.

*Numer. Funct. Anal. Optim.*, 29 (2008), pp. 268–282.

*SIAM J. Numer. Anal.*, 42 (2004), pp. 800–825.

*Numer. Methods Partial Differential Equations*, 21 (2005), pp. 810–842.

*J. Math. Anal. Appl.*, 110 (1985), pp. 364–383.

*Appl. Math. Optim.*, 25 (1992), pp. 81–106.

*Stoch. Stoch. Rep.*, 63 (1998), pp. 313–326.

*H*-regular noise,

*J. Comput. Appl. Math.*, 208 (2007), pp. 354–361.

*Galerkin Approximations for the Stochastic Burgers Equation*, preprint, Institute for Mathematics, University of Augsburg, Augsburg, Germany, 2009.

*Appl. Math. Optim.*, 54 (2006), pp. 401–415.

*Appl. Math. Optim.*, 54 (2006), pp. 293–314.

*Numerical solutions for a class of SPDEs over bounded domains*, in Conference Oxford sur les méthodes de Monte Carlo séquentielles, ESAIM Proc. 19, EDP Sci., Les Ulis, France, 2007, pp. 121–125.

*Stochastic Equations in Infinite Dimensions*, Cambridge University Press, Cambridge, UK, 1992.

*Math. Comp.*, 70 (2000), pp. 121–134.

*Math. Comp.*, 80 (2011), pp. 89–117.

*Appl. Math. Lett.*, 15 (2002), pp. 661–669.

*Phys. D*, 162 (2002), pp. 131–154.

*Numer. Math.*, 96 (2004), pp. 733–770.

*Appl. Math. Optim.*, 54 (2006), pp. 369–399.

*Monte Carlo Methods Appl.*, 7 (2001), pp. 55–63.

*Phys. D*, 134 (1999), pp. 200–226.

*Discrete Contin. Dyn. Syst. Ser. B*, 6 (2006), pp. 761–781.

*Math. Comp.*, 78 (2009), pp. 845–863.

*SIAM J. Numer. Anal.*, 40 (2002), pp. 1421–1445.

*Particle approximation for first order stochastic partial differential equations*, in Applied Stochastic Analysis (New Brunswick, NJ, 1991), Lecture Notes in Control and Inform. Sci. 177, Springer-Verlag, Berlin, 1992, pp. 121–133.

*Numerical experiments with S(P)DE's*, in Stochastic Partial Differential Equations (Edinburgh, 1994), London Math. Soc. Lecture Note Ser. 216, Cambridge University Press, Cambridge, UK, 1995, pp. 55–71.

*BIT*, 49 (2009), pp. 343–356.

*Stochastics*, 23 (1988), pp. 131–148.

*SIAM J. Numer. Anal.*, 44 (2006), pp. 2505–2538.

*Bull. Austral. Math. Soc.*, 54 (1996), pp. 79–85.

*Potential Anal.*, 9 (1998), pp. 1–25.

*Potential Anal.*, 11 (1999), pp. 1–37.

*Approximations of stochastic partial differential equations*, in Stochastic Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math. 227, Dekker, New York, 2002, pp. 287–307.

*Ann. Probab.*, 31 (2003), pp. 564–591.

*On the rate of convergence of splitting-up approximations for SPDEs*, in Stochastic Inequalities and Applications, Progr. Probab. 56, Birkhäuser, Basel, 2003, pp. 301–321.

*Stochastics*, 78 (2006), pp. 213–231.

*Potential Anal.*, 23 (2005), pp. 99–134.

*Rate of convergence of implicit approximations for stochastic evolution equations,*in Stochastic Differential Equations: Theory and Applications, Interdiscip. Math. Sci. 2, World Scientific, Hackensack, NJ, 2007, pp. 281–310.

*Potential Anal.*, 30 (2009), pp. 29–64.

*Stochastic Process. Appl.*, 58 (1995), pp. 57–72.

*Potential Anal.*, 7 (1997), pp. 725–757.

*J. Comput. Appl. Math.*, 147 (2002), pp. 485–516.

*Potential Anal.*, 18 (2003), pp. 141–186.

*Weak approximation for semilinear stochastic evolution equations,*in Stochastic Analysis and Related Topics VIII, Progr. Probab. 53, Birkhäuser, Basel, 2003, pp. 111–128.

*Weak approximation of stochastic partial differential equations,*in Stochastic Analysis and Related Topics VIII. Silivri Workshop, U. Capar and A. Üstünel, eds., Progr. Probab., Birkhauser, Basel, 2003.

*SIAM J. Numer. Anal.*, 46 (2008), pp. 437–471.

*BIT*, 46 (2006), pp. 773–811.

*SIAM J. Control Optim.*, 38 (2000), pp. 893–915.

*Potential Anal.*, 31 (2009), pp. 375–404.

*Discrete Contin. Dyn. Syst. Ser. B*, 14 (2010), pp. 515–557.

*Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.*, 465 (2009), pp. 649–667.

*Milan J. Math.*, 77 (2009), pp. 205–244.

*Ann. Probab.*, 38 (2010), pp. 532–569.

*Efficient simulation of nonlinear parabolic SPDEs with additive noise*, Ann. Appl. Probab., to appear.

*Lattice approximation of a nonlinear stochastic partial differential equation with white noise*, in Random Partial Differential Equations (Oberwolfach, 1989), Internat. Ser. Numer. Math. 102, Birkhäuser, Basel, 1991, pp. 107–126.

*J. Korean Statist. Soc.*, 33 (2004), pp. 459–470.

*J. Appl. Math. Stoch. Anal.*, 14 (2001), pp. 47–53.

*Numer. Algorithms*, 53 (2010), pp. 309–320.

*Numerical solutions for a class of SPDEs with application to filtering*, in Stochastics in Finite and Infinite Dimensions, Trends Math., Birkhäuser Boston, Boston, 2001, pp. 233–258.

*Splitting-up approximation for SPDEs and SDEs with application to nonlinear filtering*, in Stochastic Partial Differential Equations and Their Applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci. 176, Springer-Verlag, Berlin, 1992, pp. 177–187.

*Math. Pannon.*, 12 (2001), pp. 245–268.

*IMA J. Numer. Anal.*, 54 (2004), pp. 587–604.

*SIAM J. Numer. Anal.*, 45 (2007), pp. 870–889.

*A Modified Semi–Implict Euler-Maruyama Scheme for Finite Element Discretization of SPDEs*, 2010; available online from http://www.arxiv.org/abs/arXiv:1004.1998.

*Stochastic Exponential Integrators for a Finite Element Discretization of SPDEs*, 2010; available online from http://www.arxiv.org/abs/arXiv:1005.5315.

*Problems in Statistics of Stochastic Differential Equations*, Doctoral thesis, University of Southern California, Los Angeles, CA, 1996.

*Quart. Appl. Math.*, 66 (2008), pp. 499–520.

*Splitting Integratoren für stochastische Schrödinger-Gleichungen*, Doctoral thesis, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, 2007.

*Interpolation Theory*, 2nd ed., Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009.

*Int. J. Comput. Math.*, 85 (2008), pp. 527–546.

*Appl. Math. Optim.*, 54 (2006), pp. 343–368.

*Finite-difference approximation of the solution of a stochastic evolution equation*, in Theory of Random Processes, No. 12, Naukova Dumka, Kiev, 1984, pp. 56–59.

*Stochastic Process. Appl.*, 115 (2005), pp. 1073–1106.

*Math. Comp.*, 73 (2004), pp. 1393–1415.

*Found. Comput. Math.*, 7 (2007), pp. 135–181.

*BIT*, 47 (2007), pp. 393–418.

*Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise*, in Monte Carlo and Quasi-Monte Carlo Methods 2006, A. Keller, S. Heinrich, and H. Niederreiter, eds., Springer-Verlag, Berlin, 2008, pp. 577–589.

*Stoch. Dyn.*, 8 (2008), pp. 519–541.

*Räumliche und zeitliche Diskretisierung einer stabilen stochastischen partiellen Differentialgleichung*, Diplomarbeit, Universität Paderborn, Paderborn, Germany, 2007.

*Potential Anal.*, 22 (2005), pp. 375–393.

*A Concise Course on Stochastic Partial Differential Equations*, Springer-Verlag, Berlin, 2007.

*M2AN Math. Model. Numer. Anal.*, 35 (2001), pp. 1055–1078.

*Stochastische partielle Differentialgleichungen 1. Ordnung*, Doctoral thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, 2002.

*ZAMM Z. Angew. Math. Mech.*, 82 (2002), pp. 821–830.

*Stoch. Anal. Appl.*, 24 (2006), pp. 221–240.

*Monte Carlo Methods Appl.*, 13 (2007), pp. 117–133.

*Discrete Contin. Dyn. Syst. Ser. S*, 1 (2008), pp. 353–363.

*Comput. Phys. Comm.*, 74 (1993), pp. 303–315.

*Dynamics of Evolutionary Equations*, Springer-Verlag, New York, 2002.

*Numer. Funct. Anal. Optim.*, 20 (1999), pp. 121–145.

*BIT*, 43 (2003), pp. 179–193.

*J. Comput. Appl. Math.*, 175 (2005), pp. 429–446.

*Numerical solution of Wick-stochastic partial differential equations*, in Proceedings of the International Conference on Stochastic Analysis and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 303–349.

*Galerkin Finite Element Methods for Parabolic Problems*, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

*Potential Anal.*, 23 (2005), pp. 1–43.

*Error Analysis and Smoothing Properties of Discretized Deterministic and Stochastic Parabolic Problems*, Dissertation, Chalmers University of Technology, Gothenburg, Sweden, 2000.

*BIT*, 44 (2004), pp. 829–847.

*SIAM J. Numer. Anal.*, 43 (2005), pp. 1363–1384.

*Math. Comp.*, 69 (1999), pp. 653–666.

*Appl. Math. Comput.*, 155 (2004), pp. 479–492.

## Information & Authors

### Information

#### Published In

#### Copyright

#### History

**Submitted**: 14 November 2008

**Accepted**: 20 December 2010

**Published online**: 5 April 2011

#### MSC codes

#### Keywords

### Authors

## Metrics & Citations

### Metrics

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

#### Cited By

- Convergence analysis of a simplified scheme for stochastic Burgers’ equation with additive noiseResults in Applied Mathematics, Vol. 23 | 1 Aug 2024
- Total Variation Error Bounds for the Accelerated Exponential Euler Scheme Approximation of Parabolic Semilinear SPDEsSIAM Journal on Numerical Analysis, Vol. 62, No. 3 | 15 May 2024
- A computational scheme and its comparison with optical soliton solutions for the stochastic Chen–Lee–Liu equation with sensitivity analysisModern Physics Letters B, Vol. 40 | 10 May 2024
- A Note on Single-Step Difference Scheme for the Solution of Stochastic Differential EquationLobachevskii Journal of Mathematics, Vol. 45, No. 4 | 22 August 2024
- Total Variation Error Bounds for the Approximation of the Invariant Distribution of Parabolic Semilinear SPDEs Using the Standard Euler SchemePotential Analysis, Vol. 50 | 19 March 2024
- An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion EquationCommunications on Applied Mathematics and Computation, Vol. 40 | 16 January 2024
- Discrete random stabilities of attractors for nonlocal lattice equations with implicit or colored noiseCommunications on Pure and Applied Analysis, Vol. 0, No. 0 | 1 Jan 2024
- Enlarged Numerical Attractors for Lattice Systems with Porous Media DegeneraciesSIAM Journal on Applied Dynamical Systems, Vol. 22, No. 3 | 9 August 2023
- Numerical conservation issues for the stochastic Korteweg–de Vries equationJournal of Computational and Applied Mathematics, Vol. 424 | 1 May 2023
- Optimization and Convergence of Numerical Attractors for Discrete-Time Quasi-Linear Lattice SystemSIAM Journal on Numerical Analysis, Vol. 61, No. 2 | 25 April 2023
- Pathwise convergence under Knightian uncertaintyJournal of Mathematical Analysis and Applications, Vol. 518, No. 1 | 1 Feb 2023
- A spectral Galerkin exponential Euler time-stepping scheme for parabolic SPDEs on two-dimensional domains with a $ \mathcal{C}^2 $ boundaryDiscrete and Continuous Dynamical Systems - B, Vol. 0, No. 0 | 1 Jan 2023
- Stochastic optimal control in infinite dimensions with state constraintsNonlinear Analysis, Vol. 223 | 1 Oct 2022
- Higher order pathwise approximation for the stochastic Burgers' equation with additive noiseApplied Numerical Mathematics, Vol. 162 | 1 Apr 2021
- An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equationStochastic Processes and their Applications, Vol. 130, No. 10 | 1 Oct 2020
- A fully discrete approximation of the one-dimensional stochastic heat equationIMA Journal of Numerical Analysis, Vol. 40, No. 1 | 29 October 2018
- Pathwise convergence of an efficient scheme for SPDEs with non-globally Lipschitz nonlinearityApplied Mathematics and Computation, Vol. 353 | 1 Jul 2019
- Stochastic exponential integrators for a finite element discretisation of SPDEs with additive noiseApplied Numerical Mathematics, Vol. 136 | 1 Feb 2019
- A modified semi–implicit Euler–Maruyama scheme for finite element discretization of SPDEs with additive noiseApplied Mathematics and Computation, Vol. 332 | 1 Sep 2018
- Finite element methods and their error analysis for SPDEs driven by Gaussian and non-Gaussian noisesApplied Mathematics and Computation, Vol. 332 | 1 Sep 2018
- Numerical methods for stochastic differential equationsNumerical Methods for Stochastic Partial Differential Equations with White Noise | 2 September 2017
- Convergence of a numerical scheme for SPDEs with correlated noise and global Lipschitz coefficientsMathematical Methods in the Applied Sciences, Vol. 39, No. 11 | 24 October 2015
- Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noiseIMA Journal of Numerical Analysis, Vol. 4 | 11 June 2016
- An Exponential Wagner--Platen Type Scheme for SPDEsSIAM Journal on Numerical Analysis, Vol. 54, No. 4 | 9 August 2016
- High Order Integrator for Sampling the Invariant Distribution of a Class of Parabolic Stochastic PDEs with Additive Space-Time NoiseSIAM Journal on Scientific Computing, Vol. 38, No. 4 | 26 July 2016
- Numerical Approximation of Stationary Distributions for Stochastic Partial Differential EquationsJournal of Applied Probability, Vol. 51, No. 03 | 19 February 2016
- Numerical Approximation of Stationary Distributions for Stochastic Partial Differential EquationsJournal of Applied Probability, Vol. 51, No. 3 | 30 January 2018
- Higher Order Strong Approximations of Semilinear Stochastic Wave Equation with Additive Space-time White NoiseSIAM Journal on Scientific Computing, Vol. 36, No. 6 | 11 November 2014
- An approximation of stochastic hyperbolic equations: case with Wiener processMathematical Methods in the Applied Sciences, Vol. 36, No. 9 | 9 January 2013
- Pathwise space approximations of semi-linear parabolic SPDEs with multiplicative noiseInternational Journal of Computer Mathematics, Vol. 89, No. 18 | 1 Dec 2012
- An Approximation of Semigroups Method for Stochastic Parabolic EquationsAbstract and Applied Analysis, Vol. 2012, No. 1 | 13 November 2012
- Numerical Solution of Stochastic Hyperbolic EquationsAbstract and Applied Analysis, Vol. 2012, No. 1 | 2 August 2012

## View Options

### Get Access

**Access via your Institution**- Questions about how to access this content? Contact SIAM at
**[email protected]**.