Abstract

We study nonparametric regression between Riemannian manifolds based on regularized empirical risk minimization. Regularization functionals for mappings between manifolds should respect the geometry of input and output manifold and be independent of the chosen parametrization of the manifolds. We define and analyze the three most simple regularization functionals with these properties and present a rather general scheme for solving the resulting optimization problem. As application examples we discuss interpolation on the sphere, fingerprint processing, and correspondence computations between three-dimensional surfaces. We conclude with characterizing interesting and sometimes counterintuitive implications and new open problems that are specific to learning between Riemannian manifolds and are not encountered in multivariate regression in Euclidean space.

MSC codes

  1. 41A15
  2. 49Q99
  3. 68T10

Keywords

  1. harmonic map
  2. biharmonic map
  3. Eells energy
  4. regularized empirical risk minimization
  5. thin-plate spline

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
T. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, New York, 1990.
2.
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, Berlin, 1998.
3.
M. Belkin and P. Niyogi, Semi-supervised learning on manifolds, Machine Learning, 56 (2004), pp. 209–239.
4.
R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds I, Ann. Statist., 31 (2003), pp. 1–29.
5.
V. Blanz and T. Vetter, A morphable model for the synthesis of 3d faces, in Proceedings of the SIGGRAPH'99 Conference, Los Angeles, 1999, ACM Press, New York, pp. 187–194.
6.
S. R. Buss and J. P. Fillmore, Spherical averages and applications to spherical splines and interpolation, ACM Trans. Graphics, 20 (2001), pp. 95–126.
7.
M. Camarinha, F. Silvia Leite, and P. Crouch, Splines of class $C^k$ on non-Euclidean spaces, IMA J. Math. Control Inform., 12 (1995), pp. 399–410.
8.
T. Cootes, G. Edwards, and C. Taylor, Active appearance models, IEEE Trans. Pattern Anal. Machine Intell., 23 (2001), pp. 681–685.
9.
B. C. Davis, P. T. Fletcher, E. Bullitt, and S. Joshi, Population shape regression from random design data, in Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007, pp. 1–7.
10.
T. Duchamp and W. Stuetzle, Spline smoothing on surfaces, J. Comput. Graphical Statist., 12 (2003), pp. 354–381.
11.
J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, AMS, Providence, RI, 1983.
12.
J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), pp. 109–160.
13.
N. I. Fisher, T. Lewis, and B. J. J. Embleton, Statistical Analysis of Spherical Data, Cambridge University Press, Cambridge, UK, 1993.
14.
S. A. Gabriel and J. T. Kajiya, Spline Interpolation in Curved Manifolds, manuscript, 1985.
15.
F. Hélein and J. C. Wood, Harmonic maps, in Handbook on Global Analysis, Elsevier, New York, 2008, pp. 417–491.
16.
M. Hofer and H. Pottmann, Energy-minimizing splines in manifolds, ACM Trans. Graphics, 23 (2004), pp. 284–293.
17.
H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), pp. 509–541.
18.
W. Kendall, Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence, Proc. London Math. Soc. (3), 61 (1990), pp. 371–406.
19.
M. Kilian, N. Mitra, and H. Pottmann, Geometric modeling in shape space, ACM Trans. Graphics (TOG), 26 (2007), article 64.
20.
R. Kimmel and J. Sethian, Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci. USA, 95 (1998), pp. 8431–8435.
21.
J. M. Lee, Riemannian Manifolds—An Introduction to Curvature, Springer, New York, 1997.
22.
L. Machado, F. S. Leite, and K. Hüper, Riemannian means as solutions of variational problems, LMS J. Comput. Math., 9 (2006), pp. 86–103.
23.
K. Mardia and P. Jupp, Directional Statistics, Wiley, New York, 2000.
24.
J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York, 1999.
25.
D. Massonnet, M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364 (1993), pp. 138–142.
26.
F. Mémoli, G. Sapiro, and S. Osher, Solving variational problems and partial differential equations mapping into general target manifolds, J. Comput. Phys., 195 (2004), pp. 263–292.
27.
S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina, 47 (2006), pp. 1–22.
28.
J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), pp. 20–63.
29.
L. Noakes, Null cubics and Lie quadratics, J. Math. Phys., 44 (2003), pp. 1436–1448.
30.
L. Noakes, G. Heinzinger, and B. Paden, Cubic splines on curved spaces, IMA J. Math. Control Inform., 6 (1989), pp. 465–473.
31.
L. Noakes and T. Popiel, Quadratures and cubics in SO(3) and SO(1, 2), IMA J. Math. Control Inform., 23 (2006), pp. 463–474.
32.
L. Noakes and T. Popiel, Geometry for robot path planning, Robotica, 25 (2007), pp. 691–701.
33.
Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel, Multi-level partition of unity implicits, ACM Trans. Graphics, 22 (2003), pp. 463–470.
34.
P. Perona, Orientation diffusions, IEEE Trans. Image Process., 7 (1998), pp. 457–467.
35.
I. U. Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder, Multiscale representations for manifold-valued data, Multiscale Model. Simul., 4 (2005), pp. 1201–1232.
36.
B. Schölkopf and A. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002.
37.
B. Schölkopf, F. Steinke, and V. Blanz, Object correspondence as a machine learning problem, in Proceedings of the 22nd International Conference on Machine Learning (ICML), Bonn, Germany, 2005, pp. 777–784.
38.
R. Shepard, Multidimensional scaling, tree-fitting, and clustering, Science, 210 (1980), pp. 390–398.
39.
F. Steinke and M. Hein, Non-parametric regression between Riemannian manifolds, in Advances in Neural Information Processing Systems 21, B. Schölkopf, J. Platt, and T. Hofmann, eds., MIT Press, Cambridge, MA, 2009, pp. 1561–1568.
40.
F. Steinke, M. Hein, J. Peters, and B. Schölkopf, Manifold-valued thin-plate splines with applications in computer graphics, Computer Graphics Forum, 27 (2008), pp. 437–448.
41.
F. Steinke, B. Schölkopf, and V. Blanz, Support vector machines for 3D shape processing, Computer Graphics Forum, 24 (2005), pp. 285–294.
42.
J. Tenenbaum, V. Silva, and J. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319–2323.
43.
Biometric Systems Lab (University of Bologna), Pattern Recognition and Image Processing Laboratory (Michigan State University), and Biometric Test Center (San Jose State University), FVC 2004: The Third International Fingerprint Verification Competition; Web site at http://bias.csr.unibo.it/fvc2004http://bias.csr.unibo.it/fvc2004.
44.
H. Urakawa, Calculus of Variations and Harmonic Maps, AMS, Providence, RI, 1993.
45.
G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conf. Ser. in Appl. Math. 59, SIAM, Philadelphia, 1990.
46.
R. Wald, General Relativity, The University of Chicago Press, Chicago, 1984.
47.
J. Wallner, H. Pottmann, and M. Hofer, Fair webs, The Visual Computer, 23 (2007), pp. 83–94.
48.
C. Wang, Stationary biharmonic maps from $\mathbb{R}^m$ into a Riemannian manifold, Comm. Pure Appl. Math., 57 (2004), pp. 419–444.
49.
H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, UK, 2005.
50.
R. Zayer, C. Rössl, and H.-P. Seidel, Setting the boundary free: A composite approach to surface parameterization, ACM Internat. Conf. Proc. Ser. 255, ACM, New York, 2005, pp. 91–100.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 527 - 563
ISSN (online): 1936-4954

History

Submitted: 17 December 2008
Accepted: 14 June 2010
Published online: 9 September 2010

MSC codes

  1. 41A15
  2. 49Q99
  3. 68T10

Keywords

  1. harmonic map
  2. biharmonic map
  3. Eells energy
  4. regularized empirical risk minimization
  5. thin-plate spline

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media