Abstract

Several old and new finite-element preconditioners for nodal-based spectral discretizations of $-\Delta u=f$ in the domain $\Omega=(-1,1)^d$ ($d=2$ or 3), with Dirichlet or Neumann boundary conditions, are considered and compared in terms of both condition number and computational efficiency. The computational domain covers the case of classical single-domain spectral approximations (see [C. Canuto et al., Spectral Methods. Fundamentals in Single Domains, Springer, Heidelberg, 2006]), as well as that of more general spectral-element methods in which the preconditioners are expressed in terms of local (upon every element) algebraic solvers. The primal spectral approximation is based on the Galerkin approach with numerical integration (G-NI) at the Legendre–Gauss–Lobatto (LGL) nodes in the domain. The preconditioning matrices rely on either $\mathbb{P}_1$, $\mathbb{Q}_1$, or $\mathbb{Q}_{1,NI}$ (i.e., with numerical integration) finite elements on meshes whose vertices coincide with the LGL nodes used for the spectral approximation. The analysis highlights certain preconditioners, which yield the solution at an overall cost proportional to $N^{d+1}$, where N denotes the polynomial degree in each direction.

MSC codes

  1. 65F10
  2. 65N35

Keywords

  1. spectral method
  2. finite elements
  3. preconditioned iterative methods
  4. elliptic equations

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Arioli, Personal communication, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, UK, 2008.
2.
O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class of preconditioning methods, Numer. Math., 48 (1986), pp. 479–498.
3.
C. Bernardi and Y. Maday., Approximations Spectrales de Problèmes aux Limites Elliptiques, Springer-Verlag, Paris, 1992.
4.
S. Beuchler, Multigrid solver for the inner problem in domain decomposition methods for P-FEM, SIAM J. Numer. Anal., 40 (2002), pp. 928–944.
5.
S. Beuchler, R. Schneider, and C. Schwab, Multiresolution weighted norm equivalences and applications, Numer. Math., 98 (2004), pp. 67–97.
6.
C. Canuto, Stabilization of spectral methods by finite element bubble functions, Comput.Methods Appl. Mech. Engrg., 116 (1994), pp. 13–26.
7.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer, Heidelberg, 2006.
8.
C. Canuto and A. Quarteroni, Preconditioned minimal residual methods for Chebyshev spectral calculations, J. Comput. Phys., 60 (1985), pp. 315–337.
9.
M. A. Casarin, Quasi-optimal Schwarz methods for the conforming spectral element discretization, SIAM J. Numer. Anal., 34 (1997), pp. 2482–2502.
10.
T. F. Chan and H. A. van der Vorst, Approximate and incomplete factorizations, in Parallel Numerical Algorithms (Hampton, VA, 1994), Vol. 4, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997, pp. 167–202.
11.
T. A. Davis, UMFPACK Version 5.0.1, Technical report, University of Florida, Gainesville, FL, 2006.
12.
T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Software, 25 (1999), pp. 1–20.
13.
M. O. Deville and E. H. Mund, Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys., 60 (1985), pp. 517–533.
14.
M. O. Deville and E. H. Mund, Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 311–342.
15.
I. S. Duff, MA$57$—A code for the solution of sparse symmetric definite and indefinite systems, ACM Trans. Math. Software, 30 (2004), pp. 118–144.
16.
I. S. Duff and S. Pralet, Strategies for scaling and pivoting for sparse symmetric indefinite problems, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 313–340.
17.
I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.
18.
P. F. Fischer, An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations, J. Comput. Phys., 133 (1997), pp. 84–101.
19.
G. Karypis lab, MeTiS, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, available online at http://glaros.dtc.umn.edu/gkhome/views/metis.
20.
P. Haldenwang, G. Labrosse, S. Abboudi, and M. Deville, An element-by-element solution algorithm for problems of structural and solid mechanics, Comput. Methods Appl. Mech. Engrg., 36 (1983), pp. 241–254.
21.
J. M. Melenk, On condition numbers in $hp$-FEM with Gauss–Lobatto-based shape functions, J. Comput. Appl. Math., 139 (2002), pp. 21–48.
22.
S. A. Orszag, Spectral methods for problem in complex geometries, J. Comput. Phys., 37 (1980), pp. 70–92.
23.
S. V. Parter, Preconditioning Legendre spectral collocation methods for elliptic problems I: Finite difference operators, SIAM J. Numer. Anal., 39 (2001), pp. 330–347.
24.
S. V. Parter, Preconditioning Legendre spectral collocation methods for elliptic problems II: Finite element operators, SIAM J. Numer. Anal., 39 (2001), pp. 348–362.
25.
S. V. Parter and E. E. Rothman, Preconditioning Legendre spectral collocation approximations to elliptic problems, SIAM J. Numer. Anal., 32 (1995), pp. 333–385.
26.
A. Quarteroni and E. Zampieri, Finite element preconditioning for Legendre spectral collocation approximations to elliptic equations and systems, SIAM J. Numer. Anal., 29 (1992), pp. 917–936.
27.
STFC, Numerical Analysis Group, Hsl, A collection of FORTRAN codes for large-scale scientific computation, available online at Science and Technology Facilities Council, http://hsl.rl.ac.uk/hsl2007.
28.
H. A. van der Vorst, High performance preconditioning, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1174–1185.
29.
H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monogr. Appl. Comput. Math. 13, Cambridge University Press, Cambridge, UK, 2003.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 4422 - 4451
ISSN (online): 1095-7197

History

Submitted: 12 January 2009
Accepted: 27 October 2009
Published online: 15 January 2010

MSC codes

  1. 65F10
  2. 65N35

Keywords

  1. spectral method
  2. finite elements
  3. preconditioned iterative methods
  4. elliptic equations

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media