Abstract

We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and the first and second moment considerations. Our main result is the location of the hard region in the planted ensemble. In a part of that hard region, instances have with high probability a single satisfying assignment.

MSC codes

  1. 90C27
  2. 68Q25
  3. 05C80

Keywords

  1. constraint satisfaction problems
  2. planted random ensemble
  3. belief propagation
  4. reconstruction on trees
  5. instances with a unique satisfying assignment

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. Achlioptas, A. Chtcherba, G. Istrate and C. Moore, The phase transition in 1-in-k SAT and NAE 3-SAT, in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2001, pp. 721–722.
2.
D. Achlioptas and A. Coja-Oghlan, Algorithmic barriers from phase transitions, 2008.
3.
S. Ben-Shimon and D. Vilenchik, Message passing for the coloring problem: Gallager meets Alon and Kahale, in Proceedings of the 13th International Conference on Analysis of Algorithms, Discrete Math. Theor. Comput. Sci. Proceedings, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2007, pp. 217–226.
4.
G. Biroli and M. Mézard, Lattice glass models, Phys. Rev. Lett., 88 (2002), Article 025501.
5.
P. Cheeseman, B. Kanefsky and W. M. Taylor, Where the really hard problems are, in Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, Australia, Morgan Kaufmann, San Mateo, CA, 1991, pp. 331–337.
6.
V. Chvatal and E. Szemerdi, Many hard examples for resolution, J. ACM, 35 (1988), pp. 759–768.
7.
A. Coja-Oghlan, M. Krivelevich and D. Vilenchik, Why almost all k-colorable graphs are easy to color, in 24th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 4393, Springer, Berlin, 2007, pp. 121–132.
8.
A. Coja-Oghlan, E. Mossel and D. Vilenchik, A spectral approach to analyzing belief propagation for 3-coloring, Comb. Probab. Comput., 18 (2009), pp. 881–912.
9.
J. R. L. de Almeida and D. J. Thouless, Stability of the Sherrington–Kirkpatrick solution of a spin-glass model, J. Phys. A, 11 (1978), pp. 983–990.
10.
W. Evans, C. Kenyon, Y. Peres and L. J. Schulman, Broadcasting on trees and the Ising model, Ann. Appl. Probab., 10 (2000), pp. 410–433.
11.
R. Monasson, F. Altarelli and F. Zamponi, Can rare SAT formulas be easily recognized? On the efficiency of message passing algorithms for k-SAT at large clause-to-variable ratios, J. Phys. A, 40 (2007), pp. 867–886.
12.
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292 (2001), pp. 472–475.
13.
U. Feige, E. Mossel and D. Vilenchik, Complete convergence of message passing algorithms for some satisfiability problems, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Comput. Sci. 4110, Springer, Berlin, 2006, p. 339–350.
14.
R. G. Gallager, Low-density parity check codes, IEEE Trans. Inform. Theory, 8 (1962), pp. 21–28.
15.
R. G. Gallager, Information Theory and Reliable Communication, John Wiley, New York, 1968.
16.
S. Janson and E. Mossel, Robust reconstruction on trees is determined by the second eigenvalue, Ann. Probab., 32 (2004), pp. 2630–2649.
17.
T. Joerg, F. Krzakala, J. Kurchan and A. C. Maggs, Simple glass models and their quantum annealing, Phys. Rev. Lett., 101 (2008), Article 147204.
18.
R. J. Bayardo Jr and J. D. Pehousek, Counting models using connected components, in Proceedings of th 17th National Conference on Artificial Intelligence, Austin, TX, AAAI Press, 2000, pp. 157–162.
19.
H. Kesten and B. P. Stigum, Additional limit theorems for indecomposable multidimensional Galton–Watson processes, Ann. Math. Stat., 37 (1966), pp. 1463–1481.
20.
H. Kesten and B. P. Stigum, Limit theorems for decomposable multi-dimensional galton-watson processes, J. Math. Anal. Appl., 17 (1966), pp. 309–338.
21.
M. Krivelevich and D. Vilenchik, Semi-random models as benchmarks for coloring algorithms, in 2006 Proceedings of the Third Workshop on Analytic Algorithmics and Combinatorics (ANALCO), Miami, FL, SIAM, 2006, pp. 211–221.
22.
F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian and L. Zdeborová, Gibbs states and the set of solutions of random constraint satisfaction problems, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 10318–10323.
23.
F. Krzakala, M. Tarzia and L. Zdeborová, A lattice model for colloidal gels and glasses, Phys. Rev. Lett., 101 (2008), Article 165702.
24.
F. Krzakala and L. Zdeborová, Hiding quiet solutions in random constraint satisfaction problems, Phys. Rev. Lett., 102 (2009), Article 238701.
25.
F. R. Kschischang, B. Frey and H.-A. Loeliger, Factor graphs and the sum-product algorithm, IEEE Trans. Inform. Theory, 47 (2001), pp. 498–519.
26.
M. Mézard and A. Montanari, Reconstruction on trees and spin glass transition, J. Stat. Phys., 124 (2006), pp. 1317–1350.
27.
M. Mézard and A. Montanari, Information, Physics, Computation, Oxford University Press, Oxford, 2009.
28.
M. Mézard and G. Parisi, The Bethe lattice spin glass revisited, Eur. Phys. J. B, 20 (2001), pp. 217–233.
29.
M. Mézard, G. Parisi and M. A. Virasoro, Spin-Glass Theory and Beyond, Lecture Notes in Phys. 9, Springer, Berlin, 1987.
30.
M. Mézard, G. Parisi and R. Zecchina, Analytic and algorithmic solution of random satisfiability problems, Science, 297 (2002), pp. 812–815.
31.
D. G. Mitchell, B. Selman and H. J. Levesque, Hard and easy distributions for SAT problems, in Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, CA, AAAI Press, 1992, pp. 459–465.
32.
A. Montanari and G. Semerjian, On the dynamics of the glass transition on Bethe lattices, J. Stat. Phys., 124 (2006), pp. 103–189.
33.
T. Mora, Géométrie et inférence dans l’optimisation et en théorie de l’information, Ph.D. thesis, Université Paris-Sud, Orsay, France 2007;
also available online from http://tel.archives-ouvertes.fr/tel-00175221/en/.
34.
E. Mossel, Reconstruction on trees: Beating the second eigenvalue, Ann. Appl. Probab., 11 (2001), pp. 285–300.
35.
J. Pearl, Reverend Bayes on inference engines: A distributed hierarchical approach, in Proceedings of the 2nd National Conference on Artificial Intelligence, Pittsburgh, PA, AAAI Press, 1982, pp. 133–136.
36.
O. Rivoire, The cavity method for large deviations, J. Stat. Mech. Theory Exp. (2005), Article.
37.
S. Seitz, M. Alava and P. Orponen, Focused local search for random 3-satisfiability, J. Stat. Mech. Theory Exp. (2005), Article.
38.
B. Selman, H. A. Kautz and B. Cohen, Local search strategies for satisfiability testing, in Cliques, Coloring, and Satisfiability, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 26, D. S. Johnson and M. A. Trick, eds., Amer. Math. Soc., Providence, RI, 1996, pp. 521–532.
39.
M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inform. Theory, 42 (1996), pp. 1710–1722.
40.
A. P. Young, S. Knysh and V. N. Smelyanskiy, Size dependence of the minimum excitation gap in the quantum adiabatic algorithm, Phys. Rev. Lett., 101 (2008), Article 170503.
41.
L. Zdeborová and F. Krzakala, Phase transitions in the coloring of random graphs, Phys. Rev. E, 76 (2007), Article 031131.
42.
L. Zdeborová and M. Mézard, Constraint satisfaction problems with isolated solutions are hard, J. Stat. Mech. Theory Exp., (2008), Article.
43.
L. Zdeborová and M. Mézard, Locked constraint satisfaction problems, Phys. Rev. Lett., 101 (2008), Article 078702.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 750 - 770
ISSN (online): 1095-7146

History

Submitted: 25 February 2009
Accepted: 3 September 2010
Published online: 1 July 2011

MSC codes

  1. 90C27
  2. 68Q25
  3. 05C80

Keywords

  1. constraint satisfaction problems
  2. planted random ensemble
  3. belief propagation
  4. reconstruction on trees
  5. instances with a unique satisfying assignment

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media