Abstract

A simple nonrecursive form of the tensor decomposition in d dimensions is presented. It does not inherently suffer from the curse of dimensionality, it has asymptotically the same number of parameters as the canonical decomposition, but it is stable and its computation is based on low-rank approximation of auxiliary unfolding matrices. The new form gives a clear and convenient way to implement all basic operations efficiently. A fast rounding procedure is presented, as well as basic linear algebra operations. Examples showing the benefits of the decomposition are given, and the efficiency is demonstrated by the computation of the smallest eigenvalue of a 19-dimensional operator.

MSC codes

  1. 15A23
  2. 15A69
  3. 65F99

Keywords

  1. tensors
  2. high-dimensional problems
  3. SVD
  4. TT-format

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005–1034.
2.
I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–825.
3.
G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.
4.
G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26 (2005), pp. 2133–2159.
5.
R. Bro, PARAFAC: Tutorial and applications, Chemometrics Intell. Lab. Syst., 38 (1997), pp. 149–171.
6.
J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970), pp. 283–319.
7.
P. Comon, Tensor decomposition: State of the art and applications, in Mathematics in Signal Processing V, J. G. McWhirter and I. K. Proudler, eds., Oxford University Press, Oxford, UK, 2002.
8.
L. de Lathauwer, B. de Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.
9.
L. de Lathauwer, B. de Moor, and J. Vandewalle, On best rank-1 and rank-$(R_1, R_2, \ldots, R_N)$ approximation of high-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324–1342.
10.
V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–1127.
11.
S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and E. E. Tyrtyshnikov, Tensor Structured Iterative Solution of Elliptic Problems with Jumping Coefficients, Preprint 55, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, 2010.
12.
M. Espig, Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen, Ph.D. thesis, Fakultat fur Mathematik und Informatik, University of Leipzig, Leipzig, Germany, 2007.
13.
S. A. Goreinov, I. V. Oseledets, and D. V. Savostyanov, Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case, ArXiv preprint arXiv:1004.1986, 2010.
14.
L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large systems in tensor product structure, Computing, 72 (2004), pp. 247–265.
15.
L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2029–2054.
16.
W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions, Computing, 76 (2006), pp. 177–202.
17.
W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. II. HKT representation of certain operators, Computing, 76 (2006), pp. 203–225.
18.
W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal. Appl., 15 (2009), pp. 706–722.
19.
R. A. Harshman, Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), pp. 1–84.
20.
J. Håstad, Tensor rank is NP-complete, J. Algorithms, 11 (1990), pp. 644–654.
21.
R. Hübener, V. Nebendahl, and W. Dür, Concatenated tensor network states, New J. Phys., 12 (2010), 025004.
22.
B. N. Khoromskij and V. Khoromskaia, Multigrid accelerated tensor approximation of function related multidimensional arrays, SIAM J. Sci. Comput., 31 (2009), pp. 3002–3026.
23.
B. N. Khoromskij, V. Khoromskaia, and H.-J. Flad, Numerical solution of the Hartree–Fock equation in multilevel tensor-structured format, SIAM J. Sci. Comput., 33 (2011), pp. 45–65.
24.
B. N. Khoromskij and I. V. Oseledets, Quantics-TT Approximation of Elliptic Solution Operators in Higher Dimensions, Preprint 79, MIS MPI, 2009.
25.
B. N. Khoromskij and I. V. Oseledets, QTT-approximation of elliptic solution operators in high dimensions, Rus. J. Numer. Anal. Math. Model, 26 (2011), pp. 303–322.
26.
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455–500.
27.
C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, EMS, Zurich, 2008.
28.
M. Nest and H.-D. Meyer, Benchmark calculations on high-dimensional Henon-Heiles potentials with the multi-configuration time dependent Hartree (MCTDH) method, J. Chem. Phys., 117 (2002), 10499.
29.
I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70–88.
30.
I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov, Tucker dimensionality reduction of three-dimensional arrays in linear time, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 939–956.
31.
I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Linear algebra for tensor problems, Computing, 85 (2009), pp. 169–188.
32.
I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759.
33.
J. Persson and L. von Persson, Pricing European multi-asset options using a space-time adaptive fd-method, Comput. Vis. Sci., 10 (2007), pp. 173–183.
34.
D. V. Savostyanov and E. E. Tyrtyshnikov, Approximate multiplication of tensor matrices based on the individual filtering of factors, Comput. Math. Math. Phys., 49 (2009), pp. 1662–1677.
35.
I. Sloan and H. Wozniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals, J. Complexity, 14 (1998), pp. 1–33.
36.
L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279–311.
37.
E. E. Tyrtyshnikov, Tensor approximations of matrices generated by asymptotically smooth functions, Sb. Math., 194 (2003), pp. 941–954.
38.
C. F. Van Loan and N. Pitsianis, Approximation with Kronecker products, in Linear Algebra for Large Scale and Real-Time Applications (Leuven, 1992), NATO Adv. Sci. Inst. Ser. E Appl. Sci. 232, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 293–314.
39.
C. F. Van Loan, Tensor network computations in quantum chemistry, Technical report, available online at www.cs.cornell.edu/cv/OtherPdf/ZeuthenCVL.pdf, 2008.
40.
O. Vendrell, F. Gatti, D. Lauvergnat, and H.-D. Meyer, Full-dimensional ($15$-dimensional) quantum-dynamical simulation of the protonated water dimer. I. Hamiltonian setup and analysis of the ground vibrational state., J. Chem. Phys., 127 (2007), pp. 184302–184318.
41.
X. Wang and I. H. Sloan, Why are high-dimensional finance problems often of low effective dimension?, SIAM J. Sci. Comput., 27 (2005), pp. 159–183.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 2295 - 2317
ISSN (online): 1095-7197

History

Submitted: 10 March 2009
Accepted: 19 June 2011
Published online: 22 September 2011

MSC codes

  1. 15A23
  2. 15A69
  3. 65F99

Keywords

  1. tensors
  2. high-dimensional problems
  3. SVD
  4. TT-format

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media