Abstract

We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Finally, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.

MSC codes

  1. 65F10
  2. 65N20
  3. 65N30

Keywords

  1. algebraic multigrid
  2. compatible relaxation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. M. Alber and L. N. Olson, Parallel coarse-grid selection, Numer. Linear Algebra Appl., 14 (2007), pp. 611–643.
2.
R. E. Bank, Compatible coarsening in the multigraph algorithm, Adv. Eng. Softw., 38 (2007), pp. 287–294.
3.
A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986), pp. 23–56.
4.
A. Brandt, General highly accurate algebraic coarsening, Electron. Trans. Numer. Anal., 10 (2000), pp. 1–20.
5.
A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press, Cambridge, UK, 1984, pp. 257–284.
6.
J. Brannick, Adaptive Algebraic Multigrid Coarsening Strategies, Ph.D. thesis, University of Colorado at Boulder, Boulder, CO, 2005.
7.
J. Brannick, M. Brezina, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, An energy-based AMG coarsening strategy, Numer. Linear Algebra Appl., 13 (2006), pp. 133–148.
8.
J. Brannick and L. Zikatanov, Algebraic multigrid methods based on compatible relaxation and energy minimization, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng. 55, O. B. Widlund and D. E. Keyes, eds., Springer-Verlag, Berlin, 2007, pp. 15–26.
9.
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, Adaptive smoothed aggregation ($\alpha$SA), SIAM J. Sci. Comput., 25 (2004), pp. 1896–1920.
10.
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, Adaptive algebraic multigrid, SIAM J. Sci. Comput., 27 (2006), pp. 1261–1286.
11.
S. Demko, W. Moss, and P. Smith, Decay rates of inverse band matrices, Math. Comp., 43 (1984), pp. 491–499.
12.
B. Diskin, J. L. Thomas, and R. E. Mineck, On quantitative analysis methods for multigrid solutions, SIAM J. Sci. Comput., 27 (2005), pp. 108–129.
13.
R. D. Falgout, J. E. Jones, and U. M. Yang, The design and implementation of hypre, a library of parallel high performance preconditioners, in Numerical Solution of Partial Differential Equations on Parallel Computers, Lect. Notes Comput. Sci. Eng. 51, A. M. Bruaset and A. Tveito, eds., Springer-Verlag, Berlin, 2006, pp. 267–294.
14.
R. D. Falgout and P. S. Vassilevski, On generalizing the algebraic multigrid framework, SIAM J. Numer. Anal., 42 (2004), pp. 1669–1693.
15.
R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, On two-grid convergence estimates, Numer. Linear Algebra Appl., 12 (2005), pp. 471–494.
16.
hypre: High Performance Preconditioners, http://www.llnl.gov/CASC/hypre/.
17.
O. Livne, Coarsening by compatible relaxation, Numer. Linear Algebra Appl., 11 (2004), pp. 205–227.
18.
J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, Frontiers Appl. Math. 3, S. F. McCormick, ed., SIAM, Philadelphia, 1987, pp. 73–130.
19.
H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, Distance-two interpolation for parallel algebraic multigrid, Numer. Linear Algebra Appl., 15 (2008), pp. 115–139.
20.
H. De Sterck, U. Meier Yang, and J. J. Heys, Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1019–1039.
21.
K. Stüben, An introduction to algebraic multigrid, in Multigrid, U. Trottenberg, C. Oosterlee, and A. Schüller, eds., Academic Press, San Diego, CA, 2001, pp. 413–528.
22.
P. S. Vassilevski, Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations, Springer-Verlag, New York, 2008.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 1393 - 1416
ISSN (online): 1095-7197

History

Submitted: 25 September 2009
Accepted: 22 February 2010
Published online: 21 May 2010

MSC codes

  1. 65F10
  2. 65N20
  3. 65N30

Keywords

  1. algebraic multigrid
  2. compatible relaxation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media