Abstract

We investigate an acceleration technique for restarted Krylov subspace methods for computing the action of a function of a large sparse matrix on a vector. Its effect is to ultimately deflate a specific invariant subspace of the matrix which most impedes the convergence of the restarted approximation process. An approximation to the subspace to be deflated is successively refined in the course of the underlying restarted Arnoldi process by extracting Ritz vectors and using those closest to the spectral region of interest as exact shifts. The approximation is constructed with the help of a generalization of Krylov decompositions to linearly dependent vectors. A description of the restarted process as a successive interpolation scheme at Ritz values is given in which the exact shifts are replaced with improved approximations of eigenvalues in each restart cycle. Numerical experiments demonstrate the efficacy of the approach.

MSC codes

  1. 65F60
  2. 65F50
  3. 65F10
  4. 65F30

Keywords

  1. matrix function
  2. Krylov subspace approximation
  3. restarted Krylov subspace method
  4. thick restarting
  5. deflated restarting
  6. implicitly restarted Arnoldi/Lanczos method
  7. polynomial interpolation

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. I. Achieser, Theory of Approximation, Frederick Ungar Publishing Co., New York, 1956.
2.
M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel, A generalization of the steepest descent method for matrix functions, Electron. Trans. Numer. Anal., 28 (2008), pp. 206–222.
3.
M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel, Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429 (2008), pp. 229–314.
4.
J. Baglama, D. Calvetti, G. H. Golub and L. Reichel, Adaptively preconditioned GMRES algorithms, SIAM J. Sci. Comput., 20 (1998), pp. 243–269.
5.
C. Beattie, M. Embree and J. Rossi, Convergence of restarted Krylov subspaces to invariant subspaces, SIAM J. Matrix Anal. Appl., 25 (2004), pp. 1074–1109.
6.
B. Beckermann and L. Reichel, Error estimation and evaluation of matrix functions via the Faber transform, SIAM J. Numer. Anal., 47 (2009), pp. 3849–3883.
7.
J. Bloch, A. Frommer, B. Lang and T. Wettig, An iterative method to compute the sign function of a non-Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential, Comput. Phys. Commun., 177 (2007), pp. 933–943.
8.
M. Caliari, M. Vianello and L. Bergamaschi, Interpolating discrete advection-diffusion propagators at Leja sequences, J. Comput. Appl. Math., 172 (2004), pp. 79–99.
9.
V. L. Druskin and L. A. Knizhnerman, Two polynomial methods of calculating functions of symmetric matrices, Comput. Math. Math. Phys., 29 (1989), pp. 112–121.
10.
V. L. Druskin and L. A. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 775–771.
11.
M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481–2504.
12.
M. Eiermann, O. G. Ernst and O. Schneider, Analysis of acceleration strategies for restarted minimal residual methods, J. Comput. Appl. Math., 123 (2000), pp. 261–292.
13.
J. Erhel, K. Burrage and B. Pohl, Restarted GMRES preconditioned by deflation, J. Comput. Appl. Math., 69 (2000), pp. 303–318.
14.
T. Ericsson, Computing Functions of Matrices using Krylov Subspace Methods, Technical report, Department of Computer Science, Chalmers University of Technology and the University of Göteborg, Göteborg, Sweden, 1990.
15.
J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438–1457.
16.
A. Frommer and V. Simoncini, Matrix functions, in Model Order Reduction: Theory, Research Aspects and Applications, Mathematics in Industry, H. A. van der Vorst, W. H. A. Schilders and J. Rommes eds., Springer-Verlag, Berlin/Heidelberg, 2008, pp. 275–303.
17.
S. Güttel, Rational Krylov Methods for Operator Functions, Dissertation, Fakultät für Mathematik und Informatik der Technischen Universität Bergakademie Freiberg, Freiberg, Germany, 2010.
18.
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
19.
M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.
20.
W. Huisinga, L. Pesce, R. Kosloff and P. Saalfrank, Faber and Newton polynomial integrators for open-system density matrix propagation, J. Chem. Phys., 110 (1999), pp. 5538–5547.
21.
L. A. Knizhnerman, Calculation of functions of unsymmetric matrices using Arnoldi’s method, Comput. Math. Math. Phys., 31 (1991), pp. 1–9.
22.
Y. Y. Lu, Computing a matrix function for exponential integrators, J. Comput. Appl. Math., 161 (2003), pp. 203–216.
23.
I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44 (2004), pp. 595–615.
24.
R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1154–1171.
25.
R. B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1112–1135.
26.
R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp. 20–37.
27.
R. A. Nicolaides, Deflation of conjugate gradients with application to boundary value problems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365.
28.
J. Niehoff, Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren, Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine Universität Düsseldorf, Düsseldorg, Germany, 2006.
29.
C. C. Paige, B. N. Parlett and H. A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–133.
30.
A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl., 58 (1984), pp. 391–405.
31.
A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, in Recent Advances in Iterative Methods, IMA Vol. Math. Appl. 60, G. H. Golub, A. Greenbaum and M. Luskin, eds., Springer-Verlag, New York, 1994, pp. 149–164.
32.
Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Algebra Appl., 34 (1980), pp. 269–295.
33.
Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Math. Comp., 42 (1984), pp. 567–588.
34.
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1992), pp. 209–228.
35.
T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals, Electron. Trans. Numer. Anal., 29 (2007), pp. 1–18.
36.
R. M. Smith and A. G. Hutton, The numerical treatemt of advection: A performance comparison of current methods, Numer. Heat Transfer, 5 (1982), pp. 439–461.
37.
D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.
38.
A. Stathopoulos, Y. Saad and K. Wu, Dynamic thick restarting of the Davidson and the implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245.
39.
G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 601–614.
40.
H. Tal-Ezer, High degree polynomial interpolation in Newton form, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 648–667.
41.
K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 621 - 641
ISSN (online): 1095-7162

History

Submitted: 22 October 2009
Accepted: 18 February 2011
Published online: 29 June 2011

MSC codes

  1. 65F60
  2. 65F50
  3. 65F10
  4. 65F30

Keywords

  1. matrix function
  2. Krylov subspace approximation
  3. restarted Krylov subspace method
  4. thick restarting
  5. deflated restarting
  6. implicitly restarted Arnoldi/Lanczos method
  7. polynomial interpolation

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.