Derivation of the Bidomain Equations for a Beating Heart with a General Microstructure

A novel multiple scales method is formulated that can be applied to problems which have an almost periodic microstructure not in Cartesian coordinates but in a general curvilinear coordinate system. The method is applied to a model of the electrical activity of cardiac myocytes and used to derive a version of the bidomain equations describing the macroscopic electrical activity of cardiac tissue. The treatment systematically accounts for the nonuniform orientation of the cells within the tissue and for deformations of the tissue occurring as a result of the heart beat.

  • [1]  Google Scholar

  • [2]  G. W. Beeler and  and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268 (1977), pp. 177–210. CrossrefISIGoogle Scholar

  • [3]  Y. Bourgault, Y. Coudiére and , and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), pp. 458–482. NARWCQ 1468-1218 CrossrefISIGoogle Scholar

  • [4]  M. R. Boyett, J. E. Frampton and , and M. S. Kirby, The length, width and volume of isolated rat and ferret ventricular myocytes during twitch contractions and changes in osmotic strength, Exper. Physiol., 76 (1991), pp. 259–270. EXPHEZ 0958-0670 CrossrefISIGoogle Scholar

  • [5]  M. Buist, G. Sands, P. Hunter and , and A. Pullan, A deformable finite element derived finite difference methods for cardiac activation problems, Ann. Biomed. Eng., 31 (2003), pp. 557–588. ABMECF 0090-6964 CrossrefISIGoogle Scholar

  • [6]  B. J. Caldwell, M. L. Trew, G. B. Sands, D. A. Hooks, I. J. LeGrice and , and B. H. Smaill, Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes, Circ. Arrhythm. Electrophysiol., 2 (2009), pp. 433–440. CrossrefISIGoogle Scholar

  • [7]  P. Camelliti, C. R. Green, I. LeGrice and , and P. Kohl, Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling, Circ. Res., 94 (2004), pp. 828–835. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [8]  D. Durrer, R. Th. Van Dam, G. E. Freud, M. J. Janse, F. L. Meijler and , and R. C. Arzbaecher, Total excitation of the isolated human heart, Circulation, 41 (1970), pp. 899–912. CIRCAZ 0009-7322 CrossrefISIGoogle Scholar

  • [9]  W. E, B. Engquist, X. Li, W. Ren and , and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review, Comm. Comput. Phys., 2 (2007), pp. 367–450. 1815-2406 ISIGoogle Scholar

  • [10]  I. R. Efimov, V. P. Nikolski and , and G. Salama, Optical imaging of the heart, Circulation Res., 95 (2004), pp. 21–33. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [11]  R. S. Eisenberg, V. Barcillon and , and R. T. Mathias, Electrical properties of spherical syncytia, Biophys. J., 25 (1979), pp. 151–180. BIOJAU 0006-3495 CrossrefISIGoogle Scholar

  • [12]  C. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., 21 (1993), pp. 1–77. CRBEDR 0278-940X ISIGoogle Scholar

  • [13]  A. L. Hodgkin and  and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), pp. 500–544. CrossrefISIGoogle Scholar

  • [14]  D. A. Hooks, M. L. Trew, B. J. Caldwell, G. B. Sands, I. J. LeGrice and , and B. H. Smaill, Laminar arrangement of ventricular myocytes influences electrical behavior of the heart, Circ. Res., 101 (2007), pp. e103–e112. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [15]  Y. Jiang, K. Pandya, O. Smithies and , and E. W. Hsu, Three-dimensional diffusion tensor microscopy of fixed mouse hearts, Magnetic Resonance Med., 52 (2004), pp. 453–460. MRMEEN 0740-3194 CrossrefISIGoogle Scholar

  • [16]  J. P. Keener and  and A. V. Panfilov, A biophysical model of defibrillation in cardiac tissue, Biophys. J., 71 (1996), pp. 1335–1345. BIOJAU 0006-3495 CrossrefISIGoogle Scholar

  • [17]  W. Krassowska and  and J. C. Neu, Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21 (1993), pp. 137–199. CRBEDR 0278-940X ISIGoogle Scholar

  • [18]  Google Scholar

  • [19]  S. E. Litwin, S. E. Katz, J. P. Morgan and , and P. S. Douglas, Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat, Circ. Res., 89 (1994), pp. 345–354. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [20]  C. H. Luo and  and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), pp. 1071–1096. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [21]  W. T. Miller and  and D. B. Gesolowitz, Simulation studies of the electrocardiogram. I. The normal heart, Circ. Res., 43 (1978), pp. 301–315. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [22]  D. Noble and  and Y. Rudy, Models of ventricular cardiac action potentials: Iteractive interaction between experiment and simulation, Phil. Trans. R. Soc. Lond. A, 359 (2001), pp. 1127–1142. CrossrefISIGoogle Scholar

  • [23]  G. Olivetti, M. Melissari, J. M. Capasso and , and P. Anversa, Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy, Circ. Res., 68 (1991), pp. 1560–1568. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [24]  R. Penland, D. M. Harrild and , and C. S. Henriquez, Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume element discretization, Comput. Visual Sci., 4 (2002), pp. 215–226. CVSCFY 1432-9360 CrossrefGoogle Scholar

  • [25]  M. Pennacchio, G. Savaré and , and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM J. Math. Anal., 37 (2006), pp. 1333–1370. SJMAAH 0036-1410 LinkISIGoogle Scholar

  • [26]  A. Peskoff, Electrical potential in three-dimensional electrically syncytial tissues, Bull. Math. Biophys., 41 (1979), pp. 163–181. BMBIAO 0007-4985 CrossrefGoogle Scholar

  • [27]  P. A. Poole-Wilson, The dimensions of human cardiac myocytes; Confusion caused by methodology and pathology, J. Mol. Cell. Cardiol., 27 (1995), pp. 863–865. JMCDAY 0022-2828 CrossrefISIGoogle Scholar

  • [28]  G. Richardson, A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials, Math. Med. Biol., 26 (2009), pp. 201–224. CrossrefISIGoogle Scholar

  • [29]  H. I. Saleheen and  and K. T. Ng, A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues, IEEE Trans. Bio. Eng., 45 (1998), pp. 15–25. IEBEAX 0018-9294 CrossrefISIGoogle Scholar

  • [30]  P. Schmid, T. Jaermann, P. Boesiger, P. F. Niederer, P. P. Lunkenheimer, C. W. Cryer and , and R. H. Anderson, Ventricular myocardial architecture as visualised in postmortem swine hearts using magnetic resonance, Eur. J. Cardiothorac. Surg., 27 (2005), pp. 468–474. 1010-7940 CrossrefISIGoogle Scholar

  • [31]  M. S. Spach, W. T. Miller, P. C. Dolber, J. M. Kootskey, J. R. Sommer and , and C. E. Mosher, The functional role of structural complexities in the propagation of depolarization in the atrium of the dog, Circ. Res., 50 (1982), pp. 175–191. CIRUAL 0009-7330 CrossrefISIGoogle Scholar

  • [32]  M. L. Trew, B. J. Caldwell, G. B. Sands, D. A. Hooks, D. C.-S. Tai, T. M. Austin, I. J. LeGrice, A. J. Pullan and , and B. H. Smaill, Cardiac electrophysiology and tissue structure: Bridging the scale gap with a joint measurement and modelling paradigm, Exper. Physiol., 91 (2006), pp. 355–370. EXPHEZ 0958-0670 CrossrefISIGoogle Scholar

  • [33]  M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10 (2009), pp. 849–868. NARWCQ 1468-1218 CrossrefISIGoogle Scholar

  • [34]  A. Xu and  and M. R. Guevara, Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium, Chaos, 8 (1998), pp. 157–174. CHAOEH 1054-1500 CrossrefISIGoogle Scholar