Adaptive Multilevel Methods with Local Smoothing for $H^1$- and $H^{\mathrm{curl}}$-Conforming High Order Finite Element Methods

Abstract

A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method's convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library.

MSC codes

  1. 65N55
  2. 65N22
  3. 65N30
  4. 65F08

Keywords

  1. multigrid methods
  2. adaptive mesh refinement
  3. finite element method
  4. hanging nodes
  5. Maxwell equations

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in $H({\rm div})$ and $H({\rm curl})$, Numer. Math., 85 (2000), pp. 197–217.
2.
W. Bangerth, R. Hartmann, and G. Kanschat, deal.II—A general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), 24.
3.
W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations Analysis Library, Technical Reference, release 6.3, 2010.
4.
W. Bangerth and O. Kayser-Herold, Data structures and requirements for $hp$ finite element software, ACM Trans. Math. Software, 36 (2009), 4.
5.
W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser, Verlag, Basel, 2003.
6.
R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations: Users' Guide 8.0, SIAM, Philadelphia, 1998.
7.
P. Bastian, Load balancing for adaptive multigrid methods, SIAM J. Sci. Comput., 19 (1998), pp. 1303–1321.
8.
P. Bastian and C. Wieners, Multigrid methods on adaptively refined grids, Comput. Sci. Eng., 8 (2006), pp. 44–54.
9.
R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 159–182.
10.
R. Becker and M. Braack, Multigrid techniques for finite elements on locally refined meshes, Numer. Linear Algebra Appl., 7 (2000), pp. 363–379.
11.
M. Berger, M. Aftosmis, and G. Adomavicius, Parallel multigrid on Cartesian meshes with complex geometry, in Parallel Computational Fluid Dynamics (Trondheim, 2000), North-Holland, Amsterdam, 2001, pp. 283–290.
12.
F. Boyer, C. Lapuerta, S. Minjeaud, and B. Piar, A Local Adaptive Refinement Method with Multigrid Preconditioning Illustrated by Multiphase Flows Simulations, Technical report, 2008; available online at http://hal.archives-ouvertes.fr/hal-00307186.
13.
J. H. Bramble, Multigrid Methods, Pitman Res. Notes Math. Ser. 294, Longman Scientific & Technical, Harlow, UK, 1993.
14.
J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp., 55 (1990), pp. 1–22.
15.
A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333–390.
16.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed., Springer-Verlag, New York, 2002.
17.
J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), pp. 2524–2550.
18.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978.
19.
A. Cohen, W. Dahmen, and R. DeVore, Multiscale decompositions on bounded domains, Trans. Amer. Math. Soc., 352 (2000), pp. 3651–3685.
20.
A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comp., 70 (2001), pp. 27–75.
21.
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106–1124.
22.
M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math., 70 (1995), pp. 163–180.
23.
W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
24.
R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36 (1998), pp. 204–225.
25.
R. Hiptmair and W. Zheng, Local multigrid in ${\bf H}(\bf{curl})$, J. Comput. Math., 27 (2009), pp. 573–603.
26.
V. John, P. Knobloch, G. Matthies, and L. Tobiska, Non-nested multi-level solvers for finite element discretisations of mixed problems, Computing, 68 (2002), pp. 313–341.
27.
A. C. Jones, A Projected Multigrid Method for the Solution of Nonlinear Finite Element Problems on Adaptively Refined Grids, Dissertation, The University of Leeds, Leeds, UK, 2005.
28.
A. C. Jones and P. K. Jimack, An adaptive multigrid tool for elliptic and parabolic systems, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 1123–1128.
29.
G. Kanschat, Parallel and Adaptive Galerkin Methods for Radiative Transfer Problems, Dissertation (preprint SFB 359, 1996-29), Universität Heidelberg, Heidelberg, Germany, 1996.
30.
G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Structures, 82 (2004), pp. 2437–2445.
31.
S. F. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, Frontiers Appl. Math. 6, SIAM, Philadelphia, 1989.
32.
W. F. Mitchell, Parallel adaptive multilevel methods with full domain partitions, Appl. Numer. Anal. Comput. Math., 1 (2004), pp. 36–48.
33.
J.-C. Nédélec, Mixed finite elements in ${\bf R}\sp{3}$, Numer. Math., 35 (1980), pp. 315–341.
34.
M.-C. Rivara, Design and data structure of fully adaptive, multigrid, finite-element software, ACM Trans. Math. Software, 10 (1984), pp. 242–264.
35.
U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive Methods, Frontiers Appl. Math. 13, SIAM, Philadelphia, 1993.
36.
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
37.
R. S. Sampath and G. Biros, A parallel geometric multigrid method for finite elements on octree meshes, SIAM J. Sci. Comput., 32 (2010), pp. 1361–1392.
38.
A. Schmidt and K. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA, Lect. Notes Comput. Sci. Eng. 42, Springer-Verlag, Berlin, 2005.
39.
J. Schöberl, J. M. Melenk, C. Pechstein, and S. Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, IMA J. Numer. Anal., 28 (2008), pp. 1–24.
40.
P. Šolín, J. Červený, and I. Doležel, Arbitrary-level hanging nodes and automatic adaptivity in the $hp$-FEM, Math. Comput. Simulation, 77 (2008), pp. 117–132.
41.
U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.
42.
R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer Ser. Comput. Math. 27, Springer-Verlag, Berlin, 2000.
43.
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley/Teubner, Chichester, New York, 1996.
44.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581–613.
45.
H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math., 49 (1986), pp. 379–412.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 2095 - 2114
ISSN (online): 1095-7197

History

Submitted: 30 November 2009
Accepted: 2 June 2011
Published online: 25 August 2011

MSC codes

  1. 65N55
  2. 65N22
  3. 65N30
  4. 65F08

Keywords

  1. multigrid methods
  2. adaptive mesh refinement
  3. finite element method
  4. hanging nodes
  5. Maxwell equations

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media