Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations

Abstract

We consider the problem of estimating the uncertainty in large-scale linear statistical inverse problems with high-dimensional parameter spaces within the framework of Bayesian inference. When the noise and prior probability densities are Gaussian, the solution to the inverse problem is also Gaussian and is thus characterized by the mean and covariance matrix of the posterior probability density. Unfortunately, explicitly computing the posterior covariance matrix requires as many forward solutions as there are parameters and is thus prohibitive when the forward problem is expensive and the parameter dimension is large. However, for many ill-posed inverse problems, the Hessian matrix of the data misfit term has a spectrum that collapses rapidly to zero. We present a fast method for computation of an approximation to the posterior covariance that exploits the low-rank structure of the preconditioned (by the prior covariance) Hessian of the data misfit. Analysis of an infinite-dimensional model convection-diffusion problem, and numerical experiments on large-scale three-dimensional convection-diffusion inverse problems with up to 1.5 million parameters, demonstrate that the number of forward PDE solves required for an accurate low-rank approximation is independent of the problem dimension. This permits scalable estimation of the uncertainty in large-scale ill-posed linear inverse problems at a small multiple (independent of the problem dimension) of the cost of solving the forward problem.

MSC codes

  1. 35Q62
  2. 35Q93
  3. 35Q99
  4. 76R99
  5. 62F15
  6. 65C60
  7. 65M32

Keywords

  1. large-scale statistical inverse problem
  2. Bayesian inference
  3. uncertainty quantification
  4. fast algorithms
  5. low-rank approximation
  6. Lanczos
  7. Hessian
  8. convection-diffusion
  9. contaminant transport

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
V. Akçelik, G. Biros, A. Draganescu, O. Ghattas, J. Hill, and B. van Bloeman Waanders, Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants, in Proceedings of the ACM/IEEE SC2005 Conference on High Performance Networking and Computing, Seattle, WA, 2005.
2.
V. Akçelik, G. Biros, O. Ghattas, J. Hill, D. Keyes, and B. van Bloeman Waanders, Parallel PDE constrained optimization, in Parallel Processing for Scientific Computing, M. A. Heroux, P. Raghaven, and H. D. Simon, eds., SIAM, Philadelphia, 2006.
3.
V. Akçelik, G. Biros, O. Ghattas, K. R. Long, and B. van Bloemen Waanders, A variational finite element method for source inversion for convective-diffusive transport, Finite Elem. Anal. Des., 39 (2003), pp. 683–705.
4.
G. Backus and F. Gilbert, The resolving power of gross earth data, Geophys. J. R. Astron. Soc., 16 (1968), pp. 169–205.
5.
S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Users Manual, Technical report ANL-95/11 - Revision 3.1, Argonne National Laboratory, Argonne, IL, 2010.
6.
S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc (2009).
7.
S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools for Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Boston, Boston, MA, 1997, pp. 163–202.
8.
H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Systems Control Found. Appl. 1, Birkhäuser-Verlag, Boston, Basel, Berlin, 1989.
9.
J. G. Berryman, Analysis of approximate inverses in tomography I. Resolution analysis of common inverses, Optim. Eng., 1 (2001), pp. 87–115.
10.
J. G. Berryman, Analysis of approximate inverses in tomography II. Iterative inverses, Optim. Eng., 1 (2001), pp. 437–473.
11.
L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, eds., Large-Scale PDE-Constrained Optimization, Lect. Notes Comput. Sci. Eng. 30, Springer-Verlag, Heidelberg, 2003.
12.
L. Boschi, Measures of resolution in global body wave tomography, Geophys. Res. Lett., 30 (2003), SDE 2-1–2-4.
13.
T. Bui-Thanh, O. Ghattas, D. Higdon, Z. Lu, and L. Wilcox, Hessian-Informed Gaussian Process Response Surface Methods for Probability Density Approximation, manuscript, 2011.
14.
C. Burstedde, O. Ghattas, J. Martin, and L. C. Wilcox, Uncertainty Quantification in Inverse Problems with Stochastic Newton MCMC, manuscript, 2011.
15.
S. Fomel, J. Berryman, R. Clapp, and M. F. Prucha, Iterative resolution estimation in least squares Kirchhoff migration, Geophys. Prospect., 50 (2002), pp. 577–588.
16.
W. P. Gouveia and J. A. Scales, Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems, 13 (1997), pp. 323–349.
17.
W. P. Gouveia and J. A. Scales, Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis, J. Geophysical Res., 103 (1998), pp. 2759–2779.
18.
V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal, Lanczos Methods in SLEPc, Technical report STR-5, Universidad Politécnica de Valencia, Valencia, Spain, 2006; available online from http://www.grycap.upv.es/slepc.
19.
V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351–362.
20.
M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Springer-Verlag, New York, 2009.
21.
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, Philadelphia, 2008.
22.
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci., 160, Springer-Verlag, New York, 2005.
23.
O. Marques, T. Drummond, and D. Vasco, A computational strategy for the solution of large linear inverse problems in geophysics, in Proceedings of the 17th IEEE International Symposium on Parallel and Distributed Processing, 2003, p. 16.2.
24.
S. Minkoff, A computationally feasible approximate resolution matrix for seismic inverse problems, Geophys. J. Int., 126 (1996), pp. 345–359.
25.
G. Nolet, R. Montelli, and J. Virieux, Explicit, approximate expressions for the resolution and a-posteriori covariance of massive tomographic systems, Geophys. J. Int., 138 (1999), pp. 36–44.
26.
A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005.
27.
D. W. Vasco Jr., J. E. Peterson, and E. L. Majer, Resolving seismic anisotropy: Sparse matrix methods for geophysical inverse problems, Geophysics, 63 (1998), pp. 970–983.
28.
D. W. Vasco, R. J. Pulliam, and L. R. Johnson, Formal inversion of ISC arrival times for mantle P-velocity structure, Geophys. J. Int., 113 (1993), pp. 586–606.
29.
C. R. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM, Philadelphia, 2002.
30.
Z. S. Yao, R. G. Roberts, and A. Tryggvason, Calculating resolution and covariance matrices for seismic tomography with the LSQR method, Geophys. J. Int., 138 (1999), pp. 886–894.
31.
H. Zhang and C. H. Thurber, Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization, Geophys. J. Int., 170 (2007), pp. 337–345.
32.
J. Zhang and G. A. McMechan, Estimation of resolution and covariance for large matrix inversions, Geophys. J. Int., 121 (1995), pp. 409–426.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 407 - 432
ISSN (online): 1095-7197

History

Submitted: 21 December 2009
Accepted: 25 November 2010
Published online: 24 February 2011

MSC codes

  1. 35Q62
  2. 35Q93
  3. 35Q99
  4. 76R99
  5. 62F15
  6. 65C60
  7. 65M32

Keywords

  1. large-scale statistical inverse problem
  2. Bayesian inference
  3. uncertainty quantification
  4. fast algorithms
  5. low-rank approximation
  6. Lanczos
  7. Hessian
  8. convection-diffusion
  9. contaminant transport

Authors

Affiliations

B. van Bloemen Waanders

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media