Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices

Abstract

Conjugate gradient-type methods for the solution of large sparse linear systems $Ax = b$ with complex symmetric coefficient matrices $A = A^T $ are considered. Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. Conjugate gradient-type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices are investigated. In particular, a new approach with iterates defined by a quasi-minimal residual property is proposed. The resulting algorithm presents several advantages over the standard biconjugate gradient method. Some remarks are also included on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

MSC codes

  1. 65F10
  2. 65N20

Keywords

  1. complex symmetric matrices
  2. nonsymmetric Lanczos algorithm
  3. biconjugate gradients
  4. minimal residual property

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Bayliss, C. I. Goldstein, An iterative method for the Helmholtz equation, J. Comput. Phys., 49 (1983), 443–457
2.
C. S. Biddlecombe, E. A. Heighway, J. Simkin, C. W. Trowbridge, Methods for eddy current computation in three dimensions, IEEE Trans. Magnetics, MAG-18 (1982), 492–497
3.
Daniel Boley, Gene Golub, The nonsymmetric Lanczos algorithm and controllability, Systems Control Lett., 16 (1991), 97–105
4.
T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York, 1978xii+249
5.
B. D. Craven, Complex symmetric matrices, J. Austral. Math. Soc., 10 (1969), 341–354
6.
Jane K. Cullum, Ralph A. Willoughby, Lánczos algorithms for large symmetric eigenvalue computations. Vol. I, Progress in Scientific Computing, Vol. 3, Birkhäuser Boston Inc., Boston, MA, 1985xiv+273
7.
A. Draux, Polynômes orthogonaux formels, Lecture Notes in Mathematics, Vol. 974, Springer-Verlag, Berlin, 1983vi+625
8.
S. C. Eisenstat, V. Pereyra, A. Reinoza, Some observations on the generalized conjugate gradient methodNumerical Methods, Proceedings, Caracas, Venezuela, 1982, Lecture Notes in Mathematics 1005, Springer-Verlag, Berlin, 1983, 99–107
9.
Stanley C. Eisenstat, Howard C. Elman, Martin H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), 345–357
10.
Vance Faber, Thomas Manteuffel, Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), 352–362
11.
V. Faber, T. Manteuffel, Orthogonal error methods, SIAM J. Numer. Anal., 24 (1987), 170–187
12.
R. Fletcher, G. A. Watson, Conjugate gradient methods for indefinite systemsNumerical analysis (Proc 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975), Springer, Berlin, 1976, 73–89. Lecture Notes in Math., Vol. 506
13.
R. Freund, Masters Thesis, Über einige cg-ähnliche Verfahren zur Lösung linearer Gleichungssysteme, Doctoral thesis, Universität Würzburg, FRG, 1983, May
14.
R. Freund, Pseudo Ritz values for indefinite Hermitian matrices, Tech. Report, 89.33, RIACS, NASA Ames Research Center, Moffett Field, CA, 1989, August
15.
R. Freund, Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices, Tech. Report, 89.54, RIACS, NASA Ames Research Center, Moffett Field, CA, 1989, December
16.
Roland Freund, On conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices, Numer. Math., 57 (1990), 285–312
17.
R. W. Freund, N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Tech. Report, 90.51, RIACS, NASA Ames Research Center, 1990, December
18.
F. R. Gantmacher, The theory of matrices. Vol. 2, Chelsea Publishing Co., New York, 1959Vol. 2, ix+276
19.
Gene H. Golub, Martin H. Gutknecht, Modified moments for indefinite weight functions, Numer. Math., 57 (1990), 607–624
20.
Gene H. Golub, Charles F. Van Loan, Matrix computations, Johns Hopkins Series in the Mathematical Sciences, Vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983xvi+476
21.
William B. Gragg, Matrix interpretations and applications of the continued fraction algorithm, Rocky Mountain J. Math., 4 (1974), 213–225
22.
William B. Gragg, Anders Lindquist, On the partial realization problem, Linear Algebra Appl., 50 (1983), 277–319
23.
M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, IPS Research Report, 90-16, ETH Zürich, Switzerland, 1990, June
24.
Magnus R. Hestenes, Eduard Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409–436 (1953)
25.
Roger A. Horn, Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, U.K., 1985xiii+561
26.
D. A. H. Jacobs, A generalization of the conjugate-gradient method to solve complex systems, IMA J. Numer. Anal., 6 (1986), 447–452
27.
W. D. Joubert, Ph.D. Thesis, Generalized conjugate gradient and Lanczos methods for the solution of non-symmetric systems of linear equations, Department of Computer Sciences, University of Texas, Austin, TX, 1990, January
28.
Wayne D. Joubert, David M. Young, Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms, Linear Algebra Appl., 88/89 (1987), 449–485
29.
Joseph B. Keller, Dan Givoli, Exact nonreflecting boundary conditions, J. Comput. Phys., 82 (1989), 172–192
30.
S. Kung, Ph.D. Thesis, Multivariable and multidimensional systems: Analysis and design, Department of Engineering, Stanford University, Stanford, CA, 1977, June
31.
Cornelius Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards, 45 (1950), 255–282
32.
Cornelius Lanczos, Solution of systems of linear equations by minimized-iterations, J. Research Nat. Bur. Standards, 49 (1952), 33–53
33.
Cornelius Lanczos, Applied analysis, Prentice Hall Inc., Englewood Cliffs, N. J., 1956xx+539
34.
J. A. Meijerink, H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), 148–162
35.
Giorgio Moro, Jack H. Freed, Calculation of ESR spectra and related Fokker-Planck forms by the use of the Lanczos algorithm, J. Chem. Phys., 74 (1981), 3757–3773
36.
C. C. Paige, M. A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), 617–629
37.
P. N. Parlett, Reduction to tridiagonal form and minimal realizations, 1990, preprint, University of California, Berkeley, CA, January
38.
Beresford N. Parlett, Derek R. Taylor, Zhishun A. Liu, A look-ahead Lánczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985), 105–124
39.
Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems, SIAM J. Numer. Anal., 19 (1982), 485–506
40.
Youcef Saad, Martin H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869
41.
Peter Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10 (1989), 36–52
42.
D. R. Taylor, Ph.D. Thesis, Analysis of the look ahead Lanczos algorithm, Department of Mathematics, University of California, Berkeley, CA, 1982, November
43.
J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, Oxford, U.K., 1965