An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices

Abstract

The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An implementation of a look-ahead version of the Lanczos algorithm is presented that, except for the very special situation of an incurable breakdown, overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and requires the same number of matrix–vector products and inner products as the standard Lanczos process without look-ahead.

MSC codes

  1. 65F15
  2. 65F10

Keywords

  1. Lanczos method
  2. orthogonal polynomials
  3. look-ahead steps
  4. eigenvalue problems
  5. iterative methods
  6. non-Hermitian matrices
  7. sparse linear systems

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Daniel L. Boley, Sylvan Elhay, Gene H. Golub, Martin H. Gutknecht, Nonsymmetric Lanczos and finding orthogonal polynomials associated with indefinite weights, Numer. Algorithms, 1 (1991), 21–43
2.
D. L. Boley, G. H. Golub, The nonsymmetric Lanczos algorithm and controllability, Systems Control Lett., 16 (1991), 97–105
3.
Claude Brezinski, Padé-type approximation and general orthogonal polynomials, International Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, Basel, 1980, 250–
4.
C. Brezinski, M. Redivo Zaglia, H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Tech. Rep., ANO-239, Université des Sciences et Techniques de Lille Flandres-Artois, France, 1991, Jan.
5.
C. Brezinski, M. Redivo Zaglia, H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algorithms, 1 (1991), 261–284
6.
Jane Cullum, Ralph A. Willoughby, J. Cullum, R. A. Willoughby, A practical procedure for computing eigenvalues of large sparse nonsymmetric matricesLarge scale eigenvalue problems (Oberlech, 1985), North-Holland Math. Stud., Vol. 127, North-Holland, Amsterdam, 1986, 193–240
7.
A. Draux, Polynômes orthogonaux formels, Lecture Notes in Mathematics, Vol. 974, Springer-Verlag, Berlin, 1983vi+625
8.
I. S. Duff, R. G. Grimes, J. G. Lewis, Sparse matrix test problems, ACM Trans. Math. Software, 15 (1989), 1–14
9.
Roland W. Freund, Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Statist. Comput., 13 (1992), 425–448
10.
R. W. Freund, G. H. Golub, M. Hochbruck, Krylov subspace methods for non-Hermitian p-cyclic matrices, Tech. Rep., RIACS, NASA Ames Research Center, Moffett Field, CA, in preparation
11.
R. W. Freund, M. H. Gutknecht, N. M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, Part I, Tech. Rep., 90.45, RIACS, NASA Ames Research Center, Moffett Field, CA, 1990, November
12.
R. W. Freund, N. M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non- Hermitian matrices, Part II, Tech. Rep., 90.46, RIACS, NASA Ames Research Center, Moffett Field, CA, 1990, November
13.
R. W. Freund, N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), 315–339
14.
William B. Gragg, Matrix interpretations and applications of the continued fraction algorithm, Rocky Mountain J. Math., 4 (1974), 213–225
15.
William B. Gragg, Anders Lindquist, On the partial realization problem, Linear Algebra Appl., 50 (1983), 277–319
16.
Martin H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms. I, SIAM J. Matrix Anal. Appl., 13 (1992), 594–639
17.
M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II, IPS Research Report, 90–16, Zürich, Switzerland, 1990, Septemper
18.
Wayne Joubert, Lanczos methods for the solution of nonsymmetric systems of linear equations, SIAM J. Matrix Anal. Appl., 13 (1992), 926–943
19.
S.-Y. Kung, Ph.D. Thesis, Multivariable and multidimensional systems: analysis and design, Dept. of Electrical Engineering, Stanford University, Stanford, 1977, June
20.
Cornelius Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards, 45 (1950), 255–282
21.
Cornelius Lanczos, Solution of systems of linear equations by minimized-iterations, J. Research Nat. Bur. Standards, 49 (1952), 33–53
22.
Thomas A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math., 28 (1977), 307–327
23.
Beresford N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl., 13 (1992), 567–593
24.
Beresford N. Parlett, Youcef Saad, Complex shift and invert strategies for real matrices, Linear Algebra Appl., 88/89 (1987), 575–595
25.
Beresford N. Parlett, Derek R. Taylor, Zhishun A. Liu, A look-ahead Lánczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985), 105–124
26.
Eduard L. Stiefel, Kernel polynomials in linear algebra and their numerical applications, Nat. Bur. Standards Appl. Math. Ser., 1958 (1958), 1–22
27.
D. R. Taylor, Ph.D. Thesis, Analysis of the look ahead Lanczos algorithm, Dept. of Mathematics, University of California, Berkeley, 1982, November
28.
Homer F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Statist. Comput., 9 (1988), 152–163
29.
J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965xviii+662